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COURSE CONTENT

Course Content:

1. An Intractable Problem Related to Codes, Decoding

2. Random Codes

3. Information Set Decoding (ISD) Algorithms and Duals Attacks

4. Duality, Fourier Theory and Decoding Self-Reducibility (Worst-to-Average Case Reduction)

5. McEliece and Alekhnovitch Encryption’ Schemes (From Original Propositions to Instantiations)

−→ 3 lectures notes (long, for further reading): https://arxiv.org/pdf/2304.03541

Exercise Sessions:

1. Starting Exercises to Get Familiar with Linear Codes & Crypto

2. Programming Session: Implement Basic ISDs and Breaking Challenges

3. Advanced Exercises About Code-Based Cryptography and Duality

−→ 2 long exercise sheets: cryptanalyses of code-based encryption schemes
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Code-Based Cryptography?
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AN OLD HISTORY
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AN OLD HISTORY

Shannon (1948/1949) introduced the following problem (decoding),
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Recover s
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AN OLD HISTORY

Shannon (1948/1949) introduced the following problem (decoding),

s

A

+

e with few 1

A
,

Aim:

Recover s

−→ Matrix A and vectors s, e are binary (∈ F2)
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THERE ARE TRAPDOORS (I)!

McEliece (1978):

A← Trapdoor(): public-key

message

A

+

e

• With the trapdoor: easy to recover message if e “short” (with few 1, a lot of 0),

• Without: hard
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THERE ARE TRAPDOORS (II)!

Alekhnovich (2003):

Sk: s with few 1 s.t A s = 0 Pk: A

• To encrypt b = 1, send u ←− Unif

• To encrypt b = 0, send

m

A

+

e with few 1

But how to decrypt?
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YOU SAID CODE?

s

A
: s ∈ Fk2

is known as a linear code!

Understanding what is a linear code: useful to

1. build trapdoors

2. understand the hardness of decoding
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LINEAR CODES IN THE HISTORY

The first purpose of linear codes was not cryptography. . .

It was telecommunication!

−→ Codes are at the core of information theory (and friends)
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LINEAR CODES AND TELECOMMUNICATION

How to transmit k bits over a noisy channel?

1. Fix C subspace ⊆ Fn2 of dimension k

2. Map (m1, . . . ,mk) −→ c = (c1, . . . , cn) ∈ C
(
adding n− k bits redundancy

)
3. Send c across the noisy channel

Sender

m

Encoding

c

Noisy Channel

Error e

c⊕ e

Decoding

c? m

−→ from c⊕ e: how to recover e and then c?(
Decoding Problem

)
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HAMMING DISTANCE

Real life scenario: c + e with e = (e1, . . . , en) such that,

∀i ∈ [1, n], P(ei = 1) = p and P(ei = 0) = 1− p

−→ Each bit of c is flipped with probability p

Given a received corrupted word y:

P (c was sent | y is received) = pdH(c,y)(1− p)n−dH(c,y)

where dH(c, y) def
= ♯ {i ∈ [1, n] : ci 6= yi} (Hamming distance)

Any decoding candidate c ∈ C is even more likely

as it is close to the received message y for the Hamming distance.

−→ It explains why historically the Hamming distance has been the considered metric

when dealing with codes. . .
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BASICS ON LINEAR CODES



LINEAR CODE

Fq : finite field with q elements

Linear Code:

A linear code C of length n and dimension k
(
[n, k]q-code

)
:

subspace of Fnq of dimension k

First Examples:

1.
{
(f(x1), . . . , f(xn)) : f ∈ Fq[X] and deg(f) < k

}
where the xi ’s are distinct elements of Fq

is an [n, k]q-code

2.
{
(u, u + v) : u ∈ U and v ∈ V

}
where U (resp. V) is an [n, kU]q-code (resp. [n, kV]q-code)

is an [2n, kU + kV]q-code
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MINIMUM DISTANCE

Hamming Weight:

Given x ∈ Fnq , its Hamming weight is:

|x| def= ♯
{
i ∈ [1, n] : xi 6= 0

}

Minimum Distance:

The minimum distance of C is:
dmin(C)

def
= min

{
|c| : c ∈ C, c 6= 0

}

dmin(C) is an important quantity:

“geometry” of C ; “efficiency” of C ; “security” of C
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HOW TO REPRESENT A CODE (I)?

C be an [n, k]q-code

Basis representation: g1, . . . , gk basis of C,

C =
{
mG : m ∈ Fkq

}
where the rows of G ∈ Fk×n

q are the gi

Reciprocally, any G ∈ Fk×n
q of rank k defines the [n, k]q-code,

C def
=

{
mG : m ∈ Fkq

}

Generator Matrix:

G is called a generator matrix
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HOW TO REPRESENT A CODE (II)?

Dual Code:

Given C, its dual C⊥ is the [n, n− k]q-code,

C⊥ def
=

{
c⊥ ∈ Fnq : ∀c ∈ C, c · c⊥ def

=
n∑
i=1

ci c⊥i = 0 ∈ Fq

}

−→ Wait Lecture 4 to understand the rational behind this definition!

Parity-check representation: h1, . . . , hn−k basis of C⊥ ,

C =
{
c ∈ Fnq : Hc⊺ = 0

}
where the rows of H ∈ F(n−k)×n

q are the hi

Reciprocally, any H ∈ F(n−k)×n
q of rank n− k defines the [n, k]q-code,

C def
=

{
c ∈ Fnq : Hc⊺ = 0

}

Parity-Check Matrix:

H is called a parity-check matrix
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A REMARK

• G ∈ Fk×n
q generator matrix of C

(
i.e., C =

{
mG : m ∈ Fkq

})
, S ∈ Fk×k

q non-singular,

−→ SG still generator matrix of C

• H ∈ F(n−k)×n
q parity-check matrix of C

(
i.e., C =

{
c ∈ Fnq : Hc⊺ = 0

})
, S ∈ F(n−k)×(n−k)

q

non-singular,
−→ SH still parity-check matrix of C
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FROM ONE REPRESENTATION TO THE OTHER?

G ∈ Fk×n
q generator matrix

easy to compute?
←−−−−−−−−−−−→ H ∈ F(n−k)×n

q parity-check matrix

Yes!

1. Show that if H ∈ F(n−k)×n
q has rank n− k and GH⊺

= 0, then H parity-check (exercise)

2. Perform a Gaussian elimination: SG =
(
Ik | A

)
, then H =

(
−A⊤ | In−k

)
is a parity-check

matrix

17



FROM ONE REPRESENTATION TO THE OTHER?

G ∈ Fk×n
q generator matrix

easy to compute?
←−−−−−−−−−−−→ H ∈ F(n−k)×n

q parity-check matrix

Yes!

1. Show that if H ∈ F(n−k)×n
q has rank n− k and GH⊺

= 0, then H parity-check (exercise)

2. Perform a Gaussian elimination: SG =
(
Ik | A

)
, then H =

(
−A⊤ | In−k

)
is a parity-check

matrix

17



GENERATOR OR PARITY-CHECK?

Would you rather choose generator or parity-check representation?

Sorry for the team generator matrix :(

Usually, the parity-check representation is more convenient
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HAMMING CODE

Let CHam be the [7, 4]2-code of generator matrix:

G def
=


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1



H def
=

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


has rank 3 and verifies GH⊺

= 0.

Let c + e where
{

c ∈ CHam
|e| = 1 : how to easily recover e?
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MODULO THE CODE

Given c + e: recover e

−→ Make modulo C to extract the information about e

Coset Space: Fnq/C

Given an [n, k]q-code C, ♯ Fnq/C = qn−k and Fnq/C =
{
xi + C : 1 ≤ i ≤ qn−k

}

A natural set of representatives via a parity-check H: syndromes

xi + C ∈ Fnq/C 7−→ Hx⊺i ∈ Fn−k
q (called a syndrome)

is an isomorphism
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SYNDROME OR NOISY CODEWORDS?

C be an [n, k]q-code of parity-check matrix H

Noisy codeword Syndrome
c + e He⊺

• From c + e: H(c + e)⊺ = Hc⊺ + He⊺ = He⊺

• From He⊺ : compute with linear algebra y s.t
Hy⊺ = He⊺ ⇐⇒ H(y− e)⊺ = 0 ⇐⇒ y− e ∈ C ⇐⇒ y = c + e
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THE WORST-CASE DECODING PROBLEM



THE WORST-CASE DECODING PROBLEM

Two formulations for the worst-case decoding:

Problem (Noisy Codeword Decoding):

• Given: G ∈ Fk×n
q of rank k, t ∈ [0, n], y ∈ Fnq where y = c + e with c = mG for some m ∈ Fkq

and |e| = t

• Find: e
(
or equivalently m

)

Problem (Syndrome Decoding):

• Given: H ∈ F(n−k)×n
q of rank n− k, t ∈ [0, n], s ∈ Fn−k

q where He⊺ = s⊺ with |e| = t

• Find: e

−→ These problems are equivalent!

n length ; k dimension ; t decoding distance
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EQUIVALENT REPRESENTATIONS

Let, A be an algorithm such that A(G,mG + e) 7−→ e

Given (H,He⊺): our aim, recover e using A

1. Compute with linear algebra G (rank k) such that GH⊺
= 0

2. Compute (again) with linear algebra y such that Hy⊺ = He⊺

3. Notice that H(y− e)⊺ = 0 ⇐⇒ y− e = mG for some m ∈ Fkq

4. Feed (G, y) to A: it recovers e

Exercise: show that the reciprocal holds

In what follows, we will mainly keep the parity-check representation!
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NP-COMPLETENESS

Worst-Case Decisional Decoding Problem

• Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q where n, k ∈ N with k ≤ n and an integer t ≤ n.

• Decision: it exists e ∈ Fnq of Hamming weight t such He
⊺
= s⊺?

This problem is NP-complete

Is it useful?

Be careful of the input set!
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DRAWBACK OF THE NP-COMPLETENESS

The above NP-completeness shows that (if P 6= NP)

We cannot easily solve the decoding problem for all codes and all decoding distances. . .

−→ There are codes for which decoding is hard!

Not a safety guarantee for cryptographic applications!

Is decoding hard for all codes?

No! (remember Hamming code. . . )
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CODES THAT WE KNOW HOW TO DECODE: REED-SOLOMON

Generalized Reed-Solomon (GRS) Codes:

Given z ∈ (F⋆
q )

n and x ∈ Fnq s.t xi 6= xj (in particular n ≤ q) and k ≤ n.

The code GRSk(x, z) is defined as:

GRSk(x, z)
def
=

{(
z1f(x1), . . . , znf(xn)

)
: f ∈ Fq[X] and deg(f) < k

}

−→ GRS are used in QR-codes!

Exercise: GRSk(x, z) has generator matrix:

G def
=



1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
...

...
xk1 xk2 · · · xkn




z1 0

z2
. . .

0 zn


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BERLEKAMP-WELSH ALGORITHM

Decoding Algorithm:

Given, GRSk(x, z) and c + e such that
{

c ∈ GRSk(x, z)
|e| ≤

⌊
n−k
2

⌋
Then, we can recover (c, e) in polynomial time in the size of inputs, i.e., O

(
nℓ

)
for some ℓ.

−→ See Exercise Session
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IN SUMMARY

• There are codes for which decoding is hard (NP-Completeness)

• Decoding is easy for some family of codes (for instance Generalized-Reed-Solomon codes)

Is decoding hard for almost all codes?
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THE AVERAGE DECODING PROBLEM

DP(n, q, R, τ), k def
= Rn and t def= τn

Sample: H ←− Unif
(
F(n−k)×n
q

)
, x ←− Unif

(
z : |z| = t

)

Input: H s = H x

,

Recover:
e

s.t H e
= s and e ∈

{
z : |z| = t

}

For a fixed R = k/n, with respect to τ = t/n, the solution will be unique or not!
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AVERAGE HARDNESS?

Let, ε = PH,x
(
A(H, s = xH⊺

) = e such that |e| = t and eH⊺
= s

)

Using the law of total probability:

ε = 1
qk×(n−k)×(q−1)t

(n
t
) ∑

x0∈Fnq, |x0|=t

H0∈F(n−k)×n
q

P
(
A(H0, s = x0H⊺

) = e s.t |e| = t and eH⊺
= s

)

−→ ε is the average success probability of A over all fixed possible inputs

(
above probabilities are computed over the internal randomness of A

)

Consequence:

If ε is negligible, then A fails to decode almost all codes
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AVERAGE DECODING HARDNESS

Exponential Complexity for Decoding in Average:

For all known algorithms A (T running time of one iteration A)

T
ε = 2α(q,R,τ) n(1+o(1)) for some α(q, R, τ) ≥ 0

Hard Hard
Easy

τ

0 (1− R) q−1
q R + (1− R) q−1

q 1

Figure 1: Hardness of DP(n, q, R, τ) as function of τ

▶ McEliece encryption: t = τn = Θ
(

n
log n

)
▶ Other encryptions: t = τn = Θ

(√
n
)

▶ Authenticated protocols: t = τn = Cn where C constant quite small

▶ Wave Signature: t = τn = Cn where C large constant, C ≈ 0.95
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AND THE GENERATOR MATRIX REPRESENTATION?

DP
′
(n, q, R, τ). Let k def

= bRnc and t def= bτnc

• Input: (G, y def
= sG + x) where G, s and x are uniformly distributed over Fk×n

q , Fkq
and words of Hamming weight t in Fnq .

• Output: an error e ∈ Fnq of Hamming weight t such that y− e = mG for some m ∈ Fkq .

Exercise Session:

For any algorithm A solving DP
′
with probability ε and time T:

Describe an algorithm B solving DP in the ≈ same time with probability ≥ ε− O
(
q−min(k,n−k)

)
(and the reciprocal)

−→ Same average hardness with syndromes or noisy codewords formalism!
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