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COURSE CONTENT

Course Content:

1. An Intractable Problem Related to Codes, Decoding
2. Random Codes
3. Information Set Decoding (ISD) Algorithms and Duals Attacks

4. Duality, Fourier Theory and Decoding Self-Reducibility (Worst-to-Average Case Reduction)

5. McEliece and Alekhnovitch Encryption’ Schemes (From Original Propositions to Instantiations))

— 3 lectures notes (long, for further reading): https://arxiv.org/pdf/2304.03541

Exercise Sessions:

1. Starting Exercises to Get Familiar with Linear Codes & Crypto
2. Programming Session: Implement Basic ISDs and Breaking Challenges

3. Advanced Exercises About Code-Based Cryptography and Duality

— 2 long exercise sheets: cryptanalyses of code-based encryption schemes


https://arxiv.org/pdf/2304.03541

-Based Cryptography?



AN OLD HISTORY




AN OLD HISTORY

Shannon (1948/1949) introduced the following problem ( ),

Recover J




AN OLD HISTORY

Shannon (1948/1949) introduced the following problem ( )
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Recover [ s ] J
— Matrix A and vectors s, e are (e Fy)




THERE ARE TRAPDOORS (1)!

McEliece (1978):
A < Trapdoor(): public-key
A
message
Jr
| e |
o With the trapdoor: easy to recover message if e “short” (with few 1, a lot of 0),
o Without: hard J




THERE ARE TRAPDOORS (I1)!

Alekhnovich

Sk: A s| = i Pk: A

° To encrypt b = 1, send [ u 7 <«—unif

° To encrypt b = 0, send

But how to decrypt?




YOU SAID CODE?

—— . = € Ff

is known as a linear code!

Understanding what is a linear code: useful to
1. build trapdoors

2. understand the hardness of decoding



LINEAR CODES IN THE HISTORY

The first purpose of linear codes was not cryptography. . .

It was telecommunication!

— Codes are at the core of information theory (and friends)



LINEAR CODES AND TELECOMMUNICATION

How to transmit  bits over a noisy channel?




LINEAR CODES AND TELECOMMUNICATION

How to transmit  bits over a noisy channel?

1. Fix C subspace C Fj of dimension k
2. Map (m,...,mp) — c=(C,...,Cy) €C (adding n — R bits redundancy)

3. Send c across the noisy channel

Sender Encoding Noisy Channel Decoding
O—O—E= OO0
N \P N N

Error e

— from ¢ & e: how to recover e and then c?

(Decoding Problem>




HAMMING DISTANCE

Real life scenario: ¢ + e with e = (ey, ..., ep) such that,
vie[1,n], Pleg=1)=p and P(, =0)=1—p

— Each bit of c is flipped with probability p

Given a received corrupted word y:

P (c was sent | y is received) = p2H(©Y) (1 — p)1=9H(EY)

where dy(c,y) d=efjj{i €[1,n] : ¢ #y} (Hamming distance)




HAMMING DISTANCE

Real life scenario: ¢ + e with e = (ey, ..., ep) such that,
vie[1,n], Pleg=1)=p and P(, =0)=1—p

— Each bit of c is flipped with probability p

Given a received corrupted word y:

P (c was sent | y is received) = p2H(©Y) (1 — p)1=9H(EY)

where dy(c,y) d=efjj{i €[1,n] : ¢ #y} (Hamming distance)
)
Any decoding candidate ¢ € C is even more likely
as it is close to the received message y for the Hamming distance. J

— It explains why historically the Hamming distance has been the considered metric

when dealing with codes. . .



BASICS ON LINEAR CODES



LINEAR CODE

Fq: finite field with g elements

Linear Code:
A linear code C of length n and dimension k ([n, I?]qfcode):

subspace of ]Fg of dimension k

First Examples:
1. {(f(xw), .., f(xn))  f € FqlX] and deg(f) < fe} where the x;'s are distinct elements of I,

is an [n, R]q-code

2. {(u, u+v): ueUlandve V} where U (resp. V) is an [n, kylq-code (resp. [n, kv]q-code)

is an [2n, ky + ky]q-code




MINIMUM DISTANCE

Hamming Weight:
Given x € Fy, its Hamming weight is:

|| “:"‘fﬁ{i ennl: x# o}

Minimum Distance:

The minimum distance of C is:
dnin(C) € min {Jc| : cec, c#0}

dmin(C) is an important quantity:

“geometry” of C ; “efficiency” of C ; “security” of C



HOW TO REPRESENT A CODE (1)?

C be an [n, k]4-code

Basis representation: g, .. ., g basis of C,

C= {mG S me IFZ} where the rows of G € Ff*" are the g;

Reciprocally, any G € ]FSX” of rank k defines the [n, k]q-code,
c={me: mer;}

Generator Matrix:

G is called a generator matrix J
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HOW TO REPRESENT A CODE (11)?

Dual Code:

Given C, its dual ¢* is the [n, n — K]4-code,

def def
CL:G{CLE]FS: VceC,c-cL:eZc,c%:Oe]Fq}
i=1

— Wait Lecture 4 to understand the rational behind this definition!



HOW TO REPRESENT A CODE (11)?

Dual Code:
Given C, its dual ¢* is the [n, n — K]4-code,
n
CLd:ef{cL €F): Vcec, c-ch:ech,c%:Oe]Fq}
i=1
— Wait Lecture 4 to understand the rational behind this definition!
Parity-check representation: hy, ..., h,_ basis of C*,
@ = {c €Fy: HC = 0} where the rows of H € ]anfk)xn are the h;
Reciprocally, any H € ]Fg”_k)x” of rank n — k defines the [n, k]q-code,

Cd:Ef{ce]Fg: HcT:o}

Parity-Check Matrix:

H is called a parity-check matrix J




A REMARK

e G € Ff*" generator matrix of C (Le, C= {mG ' me ]Fg} ) S € Ff** non-singular,

—— SG still generator matrix of C

(n—R
q

(n—k)x (n—k)

e HEF q

)X parity-check matrix of € (i.e., C= {c Ky : Hc™ = 0} ) S €T

non-singular,
—— SH still parity-check matrix of C
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FROM ONE REPRESENTATION TO THE OTHER?

. easy to compute? _ . .
Ge ]FSX” generator matrix Sasyto computer -, o ]Fg” X1 parity-check matrix J




FROM ONE REPRESENTATION TO THE OTHER?

. easy to compute? _ . .
Ge ]FSX” generator matrix Sasyto computer -, o ]Fg” X1 parity-check matrix J
Yes!

1. Show thatifH € Fg”*k)xn has rank n — k and GHT = 0, then H parity-check (exercise)

2. Perform a Gaussian elimination: SG = (Ik | A), then H = (—AT | In,k) is a parity-check

matrix



GENERATOR OR PARITY-CHECK?

Would you rather choose generator or parity-check representation?



GENERATOR OR PARITY-CHECK?

Would you rather choose generator or parity-check representation?

Sorry for the team generator matrix :( J

Usually, the parity-check representation is more convenient




HAMMING CODE

Let Cham be the [7, 4],-code of generator matrix:

coo =
co -0
o—-oco
~ocooo
NN
N N
T NN

=

|

o o
- o
- o
o -
o -
SN

has rank 3 and verifies GHT = 0.

€ € Cham

Let c + e where { le| =1

: how to easily recover e? J
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MODULO THE CODE

Given ¢ + e: recover e

— Make modulo C to extract the information about e

Coset Space: F, /C

Given an [n, Klg-code €, #F;/C =q" " and Fj/C = {x, +C :1<i< q”*’?}

A natural set of representatives via a parity-check H: syndromes

X +C € Fg/C—> Hx! € ]Fgfk (called a syndrome) J

is an isomorphism

20



SYNDROME OR NOISY CODEWORDS?

C be an [n, R]q-code of parity-check matrix H

Noisy codeword \ Syndrome
c+e \ HeT

o Fromc+e: H(c+e)T =Hc™ + He™ = HeT

e From HeT: compute with linear algebray sit

Hy" =He' <= H(y—e)T =0 = y—ecC < y=c+e

21



THE WORST-CASE DECODING PROBLEM



THE WORST-CASE DECODING PROBLEM

formulations for the worst-case decoding:

Problem (Noisy Codeword Decoding):

e Given: G € Ft*" of rank k, t € [0, ],y € FJ where y = ¢ + e with ¢ = mG for some m € F}

and |e| =t

e Find: e (or equivalently m)

D
Problem (Syndrome Decoding):

e Given: H € ]Fg”*k)x" of rankn — k, t € [0,n], s € F)~" where He™ = sT with |e| =t

e Find: e )

— These problems are equivalent!

nlength ; kdimension ; tdecoding distance

23



EQUIVALENT REPRESENTATIONS

Let, A be an algorithm such that A(G, mG + e) — e

Given (H, HeT): our aim, recover e using A )

1. Compute with linear algebra G (rank k) such that GHT = 0
2. Compute (again) with linear algebra y such that Hy™ = HeT
3. Notice that H(y — e)T =0 <= y — e = mGforsomem € IFS

4. Feed (G,y) to A: it recovers e

Exercise: show that the reciprocal holds

In what follows, we will mainly keep the parity-check representation!
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NP-COMPLETENESS

Worst-Case Decisional Decoding Problem

e Input: H € ]Fg"_k)”, s € F)~" where n, k € Nwith k < nand an integer t < n.

e Decision: it exists e € F; of Hamming weight t such He™ = sT?

This problem is NP-complete

Is it useful?

Be careful of the input set!

25



DRAWBACK OF THE NP-COMPLETENESS

The above NP-completeness shows that (if P # NP)
We cannot easily solve the decoding problem for all codes and all decoding distances. . .

— There are codes for which decoding is hard!

Not a safety guarantee for cryptographic applications!

Is decoding hard for all codes?

No! (remember Hamming code. . .)

26



CODES THAT WE KNOW HOW TO DECODE: REED-SOLOMON

Generalized Reed-Solomon (GRS) Codes:
Givenz € (Fy)" and x € F stx # x; (in particular n < g)and k < n.

The code GRSk(x, z) is defined as:
def

GRSy(x,z) {(zqf(xm znf(xﬂ)) . fEFX and deg(f) < l?}

— GRS are used in QR-codes!

Exercise: GRSk (X, z) has generator matrix:

1 1 1
P4 0
X1 X2 Xn
2 o2 . ¥ 22
G def 1 > n
k }e k 0 Zn
X1 X ot X
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BERLEKAMP-WELSH ALGORITHM

Decoding Algorithm:

) ¢ € GRSk(x, z)
Given, GRSk(x, z) and ¢ + e such that el
le] < LTJ

Then, we can recover (c, e) in polynomial time in the size of inputs, i.e, O (ne) for some £.

— See Exercise Session
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IN SUMMARY

e There are codes for which decoding is hard (NP-Completeness)

e Decoding is easy for some family of codes (for instance Generalized-Reed-Solomon codes)

Is decoding hard for almost all codes?

29



AVERAGE DECODING PROBLEM



THE AVERAGE DECODING PROBLEM

DP(n,q,R,7), k% Rnandt % +n

Sample: H <— Unif (an_h)xn), N Unif(z szl = t)

Input:

T
]
T

e
Recover: st H : and E{Z Dz = t}

For a fixed R = k/n, with respect to = = t/n, the solution will be unique or not!

31



AVERAGE HARDNESS?

Let, e = Py x (A(H,s =xH") =e suchthat |e] =t and eHT = s)

Using the law of total probability:

E= ——— 11— > P(A(Ho,s =xHT)=e st |ef]=t and eHT =5
FX (=R x (g1t () X0 €FG, Ixgl=t ( )

(n—k)xn
Ho €Fg

— e is the average success probability of A over all fixed possible inputs

(above probabilities are computed over the internal randomness of .A)

Consequence:

If e is negligible, then A fails to decode almost all codes J
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AVERAGE DECODING HARDNESS

Exponential Complexity for Decoding in Average:

For all known algorithms A (T running time of one iteration A)

T _ JR, 1 1
I = 22(@:Rm)n(+e() for some a(q, R, 7) > 0

Hard Hard
Easy

q—1 q—1
0 (TfR)T R+(17R)T 1

Figure 1: Hardness of DP(n, g, R, 7) as function of =
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AVERAGE DECODING HARDNESS

Exponential Complexity for Decoding in Average:

For all known algorithms A (T running time of one iteration A)

T _ JR, 1 1
I = 22(@:Rm)n(+e() for some a(q, R, 7) > 0

Hard Hard
Easy

q—1 q—1
0 (TfR)T R+(17R)T 1

Figure 1: Hardness of DP(n, g, R, 7) as function of =

>  McEliece encryption: t = 7n = © (@)
» Other encryptions: t = 7n = © (1/n)
» Authenticated protocols: t = 7n = Cn where C constant quite small

P> Wave Signature: t = 7n = Cn where C large constant, C & 0.95
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AND THE GENERATOR MATRIX REPRESENTATION?

DP'(n, g, R, 7). Let k &' |Rn] and t &' |7

e Input: (G,y 56 + x) where G, s and x are uniformly distributed over ]FZX”, ]Fg

and words of Hamming weight t in Fg.

e Output: an errore € ]Fg of Hamming weight t such thaty — e = mG for some m € ]Fg.

Exercise Session:
For any algorithm A solving DP  with probability e and time T:
Describe an algorithm B solving DP in the & same time with probability > ¢ — O (q’ ’“i"(’*'”*’*))

(and the reciprocal)

— Same average hardness with syndromes or noisy codewords formalism!
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