LECTURE 2 RANDOM CODES

Summer School: Introduction to Quantum-Safe Cryptography

Thomas Debris-Alazard

July 02, 2024

Inria, École Polytechnique

CODE-BASED CRYPTOGRAPHY

Goal:

Building cryptographic primitives whose security relies on hardness of the average decoding problem

How does this problem behave as function of its parameters?

e.g. what is the number of solutions?

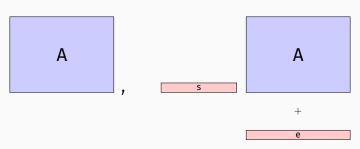
COURSE OUTLINE

- A Quick Recap of Lecture 1
- Model of Random Codes
- Weight Distribution of Random Codes
- Minimum Distance of Random Codes

A QUICK RECAP

AN OLD PROBLEM: DECODING

Shannon (1948/1949) introduced the following problem (decoding),



Aim:			
	Recover	S	

There are cryptosystems whose security relies on this problem: code-based cryptography (McEliece 78, Alekhnovich 03, etc. . .)

TWO REPRESENTATIONS OF CODES

 ${\mathcal C}$ be an $[n,k]_q\text{-code, \it i.e.,}$ subspace of ${\mathbb F}_q^n$ with dimension k

n length; k dimension

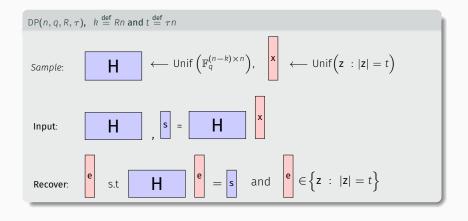
$$\mathcal{C} \stackrel{\mathrm{def}}{=} \left\{ \mathsf{mG}: \; \mathsf{m} \in \mathbb{F}_q^k
ight\}$$

 $G \in \mathbb{F}_q^{k \times n}$ rank k: generator matrix

$$\mathcal{C} \stackrel{\mathsf{def}}{=} \left\{ \mathbf{c} \in \mathbb{F}_q^n : \ \mathsf{Hc}^\mathsf{T} = \mathbf{0}
ight\}$$

 $H \in \mathbb{F}_q^{(n-k) \times n}$ rank n-k: parity-check matrix

AVERAGE DECODING PROBLEM



RANDOM CODES: SOME MOTIVATION

Average Decoding Problem (DP)

- $\bullet \ \ \text{Sample: } \mathbf{H} \leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{(n-k)\times n}\right), \mathbf{x} \leftarrow \mathsf{Unif}\left(\left\{\mathbf{z} \in \mathbb{F}_q^n: \ |\mathbf{z}| = t\right\}\right),$
- Input: (H, Hx^T),
- $\bullet \ \, \text{Output: } \mathbf{e} \in \mathbb{F}_q^n \text{ such that } \left\{ \begin{array}{l} \mathbf{H} \mathbf{e}^\mathsf{T} = \mathbf{H} \mathbf{x}^\mathsf{T} \\ |\mathbf{e}| = \mathbf{t} \end{array} \right.$

A trivial algorithm:

pick
$$\mathbf{e} \in \left\{\mathbf{z} \in \mathbb{F}_q^n: \; |\mathbf{z}| = t\right\}$$
 and test if $H\mathbf{e}^\mathsf{T} = H\mathbf{x}^\mathsf{T}$

RANDOM CODES: SOME MOTIVATION

Average Decoding Problem (DP)

- Input: (H, Hx^T),
- Output: $e \in \mathbb{F}_q^n$ such that $\left\{ \begin{array}{l} He^T = Hx^T \\ |e| = t \end{array} \right.$

A trivial algorithm:

$$\text{pick } \mathbf{e} \in \left\{\mathbf{z} \in \mathbb{F}_q^n: \ |\mathbf{z}| = \mathbf{t}\right\} \ \text{ and test if } \ \mathbf{H}\mathbf{e}^\mathsf{T} = \mathbf{H}\mathbf{x}^\mathsf{T}$$

- If one solution, probability of success: $\frac{1}{\sharp \left\{\mathbf{z} \in \mathbb{F}_q^n \colon |\mathbf{z}| = t\right\}}$
- If N solutions, probability of success: $\frac{N}{\#\left\{z \in \mathbb{F}_q^n: |z|=t\right\}}$

What is the value of N?

THE NUMBER OF SOLUTIONS?

To compute N: use the theory of random codes!

Random Code:

$$\mathcal{C} = \left\{ \mathbf{c} \in \mathbb{F}_q^n : \ \mathbf{H}\mathbf{c}^\mathsf{T} = \mathbf{0} \right\} \ \text{ such that } \ \mathbf{H} \longleftarrow \mathsf{Unif}\left(\mathbb{F}_q^{(n-k)\times n}\right)$$
 defines what is called a random code!

MODEL OF RANDOM CODES

And generator matrices?

Random Code(s):

$$\bullet \ \ \mathcal{C} = \left\{ \mathbf{m} \mathbf{G}_{\mathbf{u}}: \ \mathbf{m} \in \mathbb{F}_q^k \right\} \text{ where } \mathbf{G}_{\mathbf{u}} \leftarrow \mathrm{Unif}\left(\mathbb{F}_q^{k \times n}\right)$$

or,

$$\bullet \ \ \mathcal{C} = \left\{ \mathbf{c} \in \mathbb{F}_q^n : \ \mathbf{H}_{\mathsf{u}} \mathbf{c}^{\mathsf{T}} = \mathbf{0} \right\} \text{ where } \mathbf{H}_{\mathsf{u}} \leftarrow \mathsf{Unif} \left(\mathbb{F}_q^{(n-k) \times n} \right)$$

Are these models equivalent? Do they define a random $[n, k]_q$ -code?

Random Code(s):

•
$$C = \left\{ \mathsf{mG}_\mathsf{u} : \ \mathsf{m} \in \mathbb{F}_q^k \right\}$$
 where $\mathsf{G}_\mathsf{u} \leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{k \times n}\right)$

$$\longrightarrow \dim C \leq k \text{ as } \mathsf{rank}(\mathsf{G}_\mathsf{u}) \leq k$$

•
$$C = \left\{ \mathbf{c} \in \mathbb{F}_q^n : \mathbf{H}_u \mathbf{c}^\mathsf{T} = \mathbf{0} \right\}$$
 where $\mathbf{H}_u \leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{(n-k) \times n}\right)$

$$\longrightarrow \dim C \geq k \text{ as rank}(\mathbf{H}_u) \leq n - k$$

Both models do not seem to be equivalent. . . (Spoiler: they "are"!)

AN IMPORTANT TOOL: STATISTICAL DISTANCE

Statistical Distance:

Let X and Y be random variables,

$$\Delta(X, Y) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{a \in \mathcal{E}} |\mathbb{P}(X = a) - \mathbb{P}(Y = a)|$$

A Crucial Property: Data Processing Inequality

$$\Delta (f(X), f(Y)) \leq \Delta (X, Y)$$

Consequence: $\forall \mathcal{A}$ algorithm

$$\left|\mathbb{P}_{X}\Big(\mathcal{A}(X) = \text{``success''}\Big) - \mathbb{P}_{Y}\Big(\mathcal{A}(\textcolor{red}{Y}) = \text{``success''}\Big)\right| \leq \Delta(X,\textcolor{red}{Y}).$$

SAME MODELS

 G_u or H_u -models \iff draw uniformly an [n, k]-code:

$$G_k \in \mathbb{F}_q^{k \times n} \left(H_{n-k} \in \mathbb{F}_q^{(n-k) \times n} \right)$$
 be uniform of rank k (resp. $n-k$):

$$\Delta\left(G_{\text{\tiny U}},G_{\text{\tiny R}}\right) = \textit{O}\left(q^{-(n-k)}\right) \quad \left(\textit{resp.}\ \Delta\left(H_{\text{\tiny U}},H_{n-k}\right) = \textit{O}\left(q^{-k}\right)\right)$$

Computation are the same in G_{ij} and H_{ij} -models:

Let ${\mathcal E}$ be a set of codes (defined as an event). We have,

$$\left|\mathbb{P}_{\mathsf{G}_{\boldsymbol{\mathsf{U}}}}(\mathcal{E}) - \mathbb{P}_{\mathsf{H}_{\boldsymbol{\mathsf{U}}}}(\mathcal{E})\right| = O\left(q^{-\min(k,n-k)}\right).$$

 G_u or H_u -models \iff draw uniformly an [n, k]-code:

 $G_k \in \mathbb{F}_q^{k \times n} \left(H_{n-k} \in \mathbb{F}_q^{(n-k) \times n} \right)$ be uniform of rank k (resp. n-k):

$$\Delta (G_{\mathbf{u}}, G_{k}) = O(q^{-(n-k)})$$
 (resp. $\Delta (H_{\mathbf{u}}, H_{n-k}) = O(q^{-k})$)

Computation are the same in G_{μ} and H_{μ} -models:

Let \mathcal{E} be a set of codes (defined as an event). We have,

$$\left|\mathbb{P}_{\mathsf{G}_{\mathsf{U}}}(\mathcal{E}) - \mathbb{P}_{\mathsf{H}_{\mathsf{U}}}(\mathcal{E})\right| = O\left(q^{-\min(k,n-k)}\right).$$

Proof:

$$\left|\mathbb{P}_{\mathsf{G}_{\mathsf{U}}}(\mathcal{E}) - \mathbb{P}_{\mathsf{H}_{\mathsf{U}}}(\mathcal{E})\right| \leq \left|\mathbb{P}_{\mathsf{G}_{\mathsf{U}}}(\mathcal{E}) - \mathbb{P}_{\mathsf{G}_{k}}(\mathcal{E})\right| + \left|\mathbb{P}_{\mathsf{H}_{n-k}}(\mathcal{E}) - \mathbb{P}_{\mathsf{H}_{\mathsf{U}}}(\mathcal{E}) + \left|\mathbb{P}_{\mathsf{G}_{k}}(\mathcal{E}) - \mathbb{P}_{\mathsf{H}_{n-k}}(\mathcal{E})\right|$$

- $\left|\mathbb{P}_{\mathsf{G}_{\mathcal{U}}}(\mathcal{E}) \mathbb{P}_{\mathsf{H}_{\mathcal{U}}}(\mathcal{E})\right|$ and $\left|\mathbb{P}_{\mathsf{H}_{n-k}}(\mathcal{E}) \mathbb{P}_{\mathsf{H}_{\mathcal{U}}}(\mathcal{E})\right|$ are $O(q^{-\min(k,n-k)})$ because of the statistical distance
- $\mathbb{P}_{G_k}(\mathcal{E}) = \mathbb{P}_{H_{n-k}}(\mathcal{E})$ because codes defined by G_k and H_{n-k} have the same distribution: uniform over $[n,k]_q$ -codes.

DP: GENERATOR OR PARITY-CHECK MATRICES?

$$\mathsf{DP}'(n,q,R, au)$$
. Let $k \stackrel{\mathsf{def}}{=} \lfloor Rn \rfloor$ and $t \stackrel{\mathsf{def}}{=} \lfloor au n \rfloor$

- Input: $(G_u, y \stackrel{\text{def}}{=} sG_u + x)$ where G_u, s and x are uniformly distributed over $\mathbb{F}_q^{k \times n}$, \mathbb{F}_q^k and words of Hamming weight t.
- Output: an error $\mathbf{e} \in \mathbb{F}_q^n$ of Hamming weight t such that $\mathbf{y} \mathbf{e} = \mathbf{m} \mathbf{G}_{\mathsf{u}}$ for some $\mathbf{m} \in \mathbb{F}_q^k$.

Exercise Session 1: any algorithm solving $\mathrm{DP}'(n,q,R,\tau)$ with probability ε can be turned into an algorithm solving $\mathrm{DP}(n,q,R,\tau)$ with probability $\geq \varepsilon - O(q^{-\min(k,n-k)})$ (and reciprocally)

→ Used arguments were the same: statistical distance, closeness with matrices of fixed rank

OUR GOAL: COMPUTING THE NUMBER OF SOLUTIONS IN DP

Our Goal:

Given Hx^{T} , we want to estimate:

$$N = \sharp \left\{ \begin{aligned} \mathbf{e} &\in \mathbb{F}_q^n : & \text{and} \\ |\mathbf{e}| &= t \end{aligned} \right\}$$

A FIRST COMPUTATION WITH RANDOM CODES

Fundamental Equality:

Given,
$$\mathbf{s}$$
 and $\mathbf{y}\neq\mathbf{0}$ (fixed), $\mathbf{H}_{\mathbf{u}}\leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{(n-k)\times n}\right)$, then:

$$\mathbb{P}_{\mathsf{H}_{\mathsf{U}}}\!\left(\mathsf{H}_{\mathsf{U}}\mathsf{y}^{\mathsf{T}}=\mathsf{s}^{\top}
ight)=rac{1}{q^{n-k}}$$

A FIRST COMPUTATION WITH RANDOM CODES

Fundamental Equality:

Given, **s** and $\mathbf{y} \neq \mathbf{0}$ (fixed), $\mathbf{H}_{\mathbf{u}} \leftarrow \mathsf{Unif}\left(\mathbb{F}_q^{(n-k)\times n}\right)$, then:

$$\mathbb{P}_{\mathsf{H}_{\mathsf{U}}}\left(\mathsf{H}_{\mathsf{U}}\mathsf{y}^{\mathsf{T}}=\mathsf{s}^{\top}\right)=rac{1}{q^{n-k}}$$

Proof:

 $\mathbf{y} \neq 0$: there exists $j_0 \in [1, n]$ such that $y_{j_0} \neq 0$. As \mathbb{F}_q is a field, we write $\mathbf{H}_u \mathbf{y}^\top = \mathbf{s}^\top$ as

$$\forall i \in [1, n-k], h_{i,j_0} = \frac{1}{y_{j_0}} \left(s_i - \sum_{j \neq j_0} y_j h_{i,j} \right)$$

Above n - k equations are true with probability 1/q as the $h_{i,j}$ are uniform and independent.

Lattice analogue:
$$\frac{1}{q^{n-k}}=\frac{q^k}{q^n}=\frac{\sharp\mathcal{C}}{\sharp\mathbb{F}_q^n}$$
 plays the role of $\frac{1}{|\Lambda|}$

Given $(\mathbf{H}_{u}, \mathbf{H}_{u}\mathbf{x}^{\top})$ where $|\mathbf{x}| = t$, we are ready to compute:

$$\textit{N}\left(\textbf{H}_{\textbf{u}},\textbf{H}_{\textbf{u}}\textbf{x}^{\top},t\right)=\sharp\left\{\textbf{e}\in\mathbb{F}_{q}^{n}\ :\ |\textbf{e}|=t \text{ and } \textbf{H}_{\textbf{u}}\textbf{e}^{\intercal}=\textbf{H}_{\textbf{u}}\textbf{x}^{\top}\right\}\!.$$

Proposition:

We have,

$$\forall t>0, \ \mathbb{E}_{H_{U}}\Big(N\left(H_{U},H_{U}x^{\top},t\right)\Big)=1+\frac{\sharp\left\{e\in\mathbb{F}_{q}^{n}\colon\left|e\right|=t\right\}-1}{q^{n-k}}=1+\frac{\binom{n}{t}(q-1)^{t}-1}{q^{n-k}}$$

Proof.

$$N\left(\mathbf{H}_{\mathbf{U}}, \mathbf{H}_{\mathbf{U}} \mathbf{x}^{\top}, t\right) = \sum_{\substack{\mathbf{e}: \ |\mathbf{e}| = t \\ \mathbf{e} = A}} \mathbf{1}_{\left\{\mathbf{H}_{\mathbf{U}}(\mathbf{e} - \mathbf{x})^{\top} = \mathbf{0}\right\}} + 1$$

We conclude by linearity of the expectation and the probability given in the previous slide.

Proposition:

Given any fixed $\mathbf{s} \in \mathbb{F}_q^{n-k}$, we have

$$\forall t > 0$$
, $\mathbb{E}_{\mathbf{H}_{\mathbf{U}}}\left(N\left(\mathbf{H}_{\mathbf{U}}, \mathbf{s}, t\right)\right) = \frac{\binom{n}{t}(q-1)^t}{q^{n-k}}$

 \longrightarrow When s = 0: average number of codewords of weight t

ASYMPTOTIC BEHAVIOUR

$$\sharp \left\{ \mathbf{e} \in \mathbb{F}_q^n : |\mathbf{e}| = t \right\} = \binom{n}{t} (q-1)^t$$

$$\binom{n}{t}(q-1)^t = \Theta\left(\frac{1}{n}\right) q^{n \cdot h_q\left(\frac{t}{n}\right)}$$

$$h_q(x) \stackrel{\mathrm{def}}{=} -x \log_q \left(\frac{x}{q-1} \right) - (1-x) \log_q (1-x) \quad (q ext{-ary entropy})$$

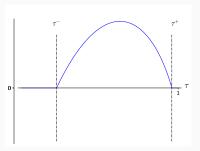


Figure 1:
$$\lim_{n \to +\infty} \frac{1}{n} \log_q \mathbb{E}_{\mathbf{H}_U} \left(N \left(\mathbf{H}_{\mathbf{U}}, \mathbf{H}_{\mathbf{U}} \mathbf{x}^{\top}, t \right) \right)$$
 where $|\mathbf{x}| = t, q = 3, k/n = 1/4$ as function of $\tau = t/n$.

In what follows: we will focus on

$$N\Big(\mathbf{H}_{\mathbf{u}},\mathbf{s},t\Big)=\sharp\left\{\mathbf{e}\in\mathbb{F}_q^n:\;|\mathbf{e}|=t\;\mathrm{and}\;\mathbf{H}_{\mathbf{u}}\mathbf{e}^{\top}=\mathbf{s}^{\top}
ight\}$$

- ▶ s is fixed an independent of H_u
- \triangleright $N(H_u, s, t)$ is a random variable (according to H_u) be defined as

$$N(\mathbf{H}_{u}, \mathbf{s}, t) = \sum_{\mathbf{e}: |\mathbf{e}| = t} \mathbf{1}_{\{\mathbf{H}_{u}\mathbf{e}^{\top} = \mathbf{s}^{\top}\}}$$

 \longrightarrow The number of solutions of DP as distance t behaves as $1 + N(H_u, s, t)$

For now, only
$$\mathbb{E}_{H_{\mathcal{U}}}\left(N\left(H_{\mathcal{U}},s,t\right)\right) = \frac{\binom{n}{n}(q-1)^t}{q^{n-k}}$$
 is known where $N(H_{\mathcal{U}},H_{\mathcal{U}},t) = \sharp\left\{e \in \mathbb{F}_q^n : |e| = t \text{ and } H_{\mathcal{U}}e^{\mathsf{T}} = s^{\mathsf{T}}\right\}$.

Be more precise?

First Moment Technique:

For any
$$a > 0$$
,

$$\mathbb{P}_{\mathsf{H}_{\mathsf{u}}}\Big(\mathsf{N}\left(\mathsf{H}_{\mathsf{u}},\mathsf{s},\mathsf{t}\right)>a\Big)\leq\frac{1}{a}\cdot\frac{\binom{n}{t}(q-1)^{\mathsf{t}}}{q^{n-k}}$$

Proof.

By Markov inequality:
$$\mathbb{P}_{\mathsf{H}_{\mathsf{U}}}\left(N\left(\mathsf{H}_{\mathsf{U}},\mathsf{s},t\right)>a\right)\leq \frac{1}{a}\cdot\mathbb{E}_{\mathsf{H}_{\mathsf{U}}}\left(N\left(\mathsf{H}_{\mathsf{U}},t\right)\right)=\frac{1}{a}\cdot\frac{\binom{n}{t}(q-t)^t}{q^{n-k}}$$

Issue:

$$\mathbb{P}_{\mathsf{H}_{\boldsymbol{\mathsf{U}}}}\!\left(\mathit{N}\left(\mathsf{H}_{\boldsymbol{\mathsf{U}}},\mathsf{s},t\right)>a
ight)\leq rac{1}{a}\cdotrac{\binom{n}{t}(q-1)^t}{q^{n-k}}$$

 \longrightarrow We can only deduce that $N(\mathbf{H}_a,\mathbf{s},t)>a$ is unlikely if $a\gg \frac{\binom{n}{t}(q-1)^t}{q^{n-k}}$

Could we know $N(H_u, s, t)$ with accuracy?

→ Yes! We used Markov inequality which is a very crude concentration inequality. . .

BIENAYMÉ-TCHEBYCHEVS INEQUALITY

Proposition (admitted):

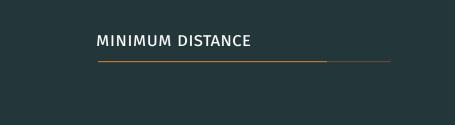
Let $\mathbf{s} \in \mathbb{F}_q^{n-k}$. For any a > 0, we have,

$$\mathbb{P}_{H_{\boldsymbol{U}}}\Big(\left|N_t(\boldsymbol{H}_{\boldsymbol{U}},\boldsymbol{s},t) - \frac{\binom{n}{t}(q-1)^t}{q^{n-k}}\right| \geq a\Big) \leq \frac{q-1}{a^2} \cdot \frac{\binom{n}{t}(q-1)^t}{q^{n-k}}$$

Suppose that
$$\frac{\binom{n}{t}(q-1)^t}{q^{n-k}} = 2^{\Omega(n)}$$

$$\longrightarrow$$
 We can choose $a=\left(\frac{\binom{n}{t}(q-1)^t}{q^{n-k}}\right)^{3/4}=2^{-\Omega(n)}\cdot\frac{\binom{n}{t}(q-1)^t}{q^{n-k}}$ and then

we deduce that $N_t(\mathbf{H}_a, \mathbf{s}, t) = \frac{\binom{n}{t}(q-1)^t}{q^{n-k}}(1+o(1))$ with probability exponentially close to one



Given H be a parity-check matrix. The number of codewords of weight t is given by

$$\sharp \left\{ \mathbf{x} \in \mathbb{F}_q^n : |\mathbf{x}| = t \text{ and } \mathbf{H} \mathbf{x}^\top = \mathbf{0} \right\}$$

By choosing H uniformly at random:

$$\mathbb{E}_{H_U}\left(\sharp\left\{x\in\mathbb{F}_q^n:\;|x|=t\text{ and }H_Ux^\top=0\right\}\right)=\frac{\binom{n}{t}(q-1)^t}{q^{n-k}}$$

→ We expect that the the minimum distance of a random code is given by

the minimum t such that

$$\frac{\binom{n}{t}(q-1)^t}{q^{n-k}} \ge 1$$

GILBERT-VARSHAMOV RADIUS

Gilbert-Varshamov Radius:

Given q, n, k: Gilbert-Varshamov radius t_{GV} is the smallest t such that:

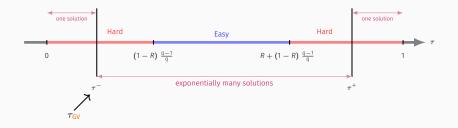
$$\binom{n}{t}(q-1)^t \ge q^{n-k} \iff q^k \cdot \binom{n}{t}(q-1)^t \ge q^n$$

Asymptotic Behaviour:

Given q, n, k where k/n = R,

$$\frac{t_{GV}}{n} \underset{n \to +\infty}{=} \underbrace{h_q^{-1} (1 - R)}_{\text{def}} (1 + o(1))$$

The Gilbert-Varshamov radius gives the boundary where DP admits one solution (with exponentially close to one probability) and exponentially many solutions



The Gilbert-Varshamov radius gives the minimum distance of a random code

Proposition

Let $\varepsilon>0$. Given $\mathcal C$ with parity-check matrix $\mathbf H$. Suppose that $\mathbf H\in\mathbb F_q^{(n-k)\times n}$ is uniformly chosen. Then,

$$\mathbb{P}_{\mathsf{H}}\left((1-\varepsilon)\cdot\tau_{\mathsf{GV}}\leq \frac{d_{\min}(\mathcal{C})}{n}\leq (1+\varepsilon)\cdot\tau_{\mathsf{GV}}\right)\geq 1-q^{-\alpha n} \quad \text{where} \quad \alpha>0.$$

BALLS AND MINIMUM DISTANCE (WORST-CASE)

 $\text{Hamming Ball of center } \mathbf{x} \in \mathbb{F}_q^n \text{ and radius } r : \quad \mathcal{B}_{\mathsf{H}}(\mathbf{c},r) \overset{\mathsf{def}}{=} \left\{ \mathbf{y} \in \mathbb{F}_q^n : \ |\mathbf{y} - \mathbf{x}| \leq r \right\}$

Proposition:

For any $[n, k]_q$ -code C with minimum distance d,

$$\forall c,c' \in \mathcal{C}, \ c \neq c' \implies \ \mathcal{B}_H\left(c,\lfloor \frac{d_{min}(\mathcal{C})-1}{2} \rfloor\right) \bigcap \mathcal{B}_H\left(c',\lfloor \frac{d_{min}(\mathcal{C})-1}{2} \rfloor\right) = \emptyset$$

 \longrightarrow The $\mathbf{c} + \mathbf{e}$ are distinct when $|\mathbf{e}| < d_{\min}(\mathcal{C})/2$ and $\mathbf{c} \in \mathcal{C}$

Be Careful:

Do not conclude that the "unique decoding regime" is given for errors

of Hamming weight
$$< d_{\min}(\mathcal{C})/2$$

---- For random codes the situation is extremely different!

BALLS AND MINIMUM DISTANCE (AVERAGE-CASE)

For a random code: $d_{\min}(\mathcal{C}) = t_{\mathsf{GV}}$ with probability exponentially close to 1

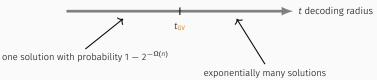
 \mathcal{C} be a random code:

$$\forall c,c'\in\mathcal{C},\ c\neq c'\colon\quad \mathcal{B}_{H}\left(c,t_{GV}\right)\bigcap\mathcal{B}_{H}\left(c',t_{GV}\right)\approx\emptyset$$

- We have defined the model of random codes (via generator or parity-check point of view)
- \blacktriangleright We have computed the average number (over codes) of solutions of DP(q, n, k, t) given by

$$1+\frac{\binom{n}{t}(q-1)^t-1}{q^{n-k}}$$

- An important quantity: Gilbert-Varshamov radius t_{GV} as function of q, n, k
 - $t_{GV}/n = h_q^{-1}(1-R)$ where R = k/n and h_q the q-ary entropy
 - \bullet The minimum distance of a random code is given by $\approx t_{\rm GV}$ with probability exponentially close to one
 - Regarding the number of solutions of DP:



there are
$$\frac{\binom{n}{t}(q-1)^t}{q^{n-k}}$$
 (1 + o(1)) solutions with probability 1 $-2^{-\Omega(n)}$