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CODE-BASED CRYPTOGRAPHY

Goal:
Building cryptographic primitives whose security relies on

hardness of the average decoding problem

How does this problem behave as function of its parameters?

e.g. what is the number of solutions?



COURSE OUTLINE

e A Quick Recap of Lecture 1
e Model of Random Codes
e Weight Distribution of Random Codes

e Minimum Distance of Random Codes




A QUICK RECAP



AN OLD PROBLEM: DECODING

Shannon (1948/1949) introduced the following problem ( ),

Recover J

There are cryptosystems whose security relies on this problem: code-based cryptography J

(McEliece 78, Alekhnovich 03, etc. . )




TWO REPRESENTATIONS OF CODES

C be an [n, R]q-code, i.e, subspace of ]Fg with dimension k

nlength ; kdimension

Cd:ef{mG: meIFZ}

Ge ]FSX” rank k : generator matrix

c®{cer: H =0}

He ]Fg”_”)x” rank n — k : parity-check matrix




AVERAGE DECODING PROBLEM

DP(n,q, R, ), k% Rnandt % 7n

Sample: H «— Unif (Fé”*'*’x”), I — umf(z 2| = t)

Input: H = H
Recover: ¢ st H : and E{Z )z :t}

x




RANDOM CODES: SOME MOTIVATION

Average Decoding Problem (DP)
e Sample: H < Unif (]Fé”fk)xn),x <+ Unif ({z EF;: |z| = })
e Input: (H, HxT),

T _ T
e Output: e € Fy such that { :—Le‘ = Hx

A trivial algorithm:

picke € {z €Fy: |2l = } and test if HeT = HxT
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If one solution, probability of success;: ———
° P Y n{zewg: \z|:}

robability of success: ——N~——
° P ity u n{zewg: \z|:}

What is the value of N?




THE NUMBER OF SOLUTIONS?

To compute N: use the theory of random codes!

Random Code:

c={ceF: HT =0} suchthat H«— unif (" ")

defines what is called a random code!




MODEL OF RANDOM CODES



RANDOM CODES: TWO MODELS

And generator matrices?

Random Code(s):
o C= {mG ‘me ]Fg} where G, « Unif (]FSX”)
or,

o C= {c EF;: Hyc" = 0} where H, + Unif (]Fé"*h)xn)

Are these models equivalent? Do they define a random [n, k]4-code?




AT FIRST SIGHT

Random Code(s):
o C= {mG S me ]FZ} where G, « Unif (]FSX”)

— dimC < kasrank(G,) <Rk

o c={ceFy: HcT =0} where H, « Unif (Fy—0*")

—> dimC > kasrank(H,) <n—~k

Both models do not seem to be equivalent. .. (Spoiler: they “are”!)
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AN IMPORTANT TOOL: STATISTICAL DISTANCE

Statistical Distance:

Let X and Y be random variables,

AXY) E 1T e [P(X=a) — P(Y = a)

A Crucial Property: Data Processing Inequality

A (f(X), f(v)) < A (X, V) J

Consequence: V.4 algorithm

|]P’X (A(X) = “success") — Py (A(Y) = “success”>| < A(X,Y).



SAME MODELS

Gy or Hy-models <= draw uniformly an [n, k]-code:

G € ]ng” (Hn_k € ]qu”*”)xn) be uniform of rank k (resp. n — R):
AG6,6:)=0(a ") (resp. A(H,H, 1) =0 (a7"))
J
Computation are the same in G, and H,-models:
Let £ be a set of codes (defined as an event). We have,
[Be, (€) = Bu, ()] = 0 (a~™"""7").
4




SAME MODELS

G, or H,-models <= draw uniformly an [n, k]-code:

G € ]ng” (Hn_k € ]Fg”*”)x”) be uniform of rank k (resp. n — R):
A(G,,Gy) =0 (q "R resp. A (H,, Hyo_) = 0 (g~ "
() ( (™)) |
Computation are the same in G, and H,-models:
Let £ be a set of codes (defined as an event). We have,
|Bg,(€) —Pu, ()| =0 <q— min(k,ﬂ—k)) ]
y
Proof:
[Ps, (€) = Pu, (8)] < [Pe, (&) — Py (€)] + [Ph,_, (&) — Pu, (&) + |Pe, (&) — P, _, (£)
° ‘]P’G (E) —Pu (8)) and |PHn—fe(€) — Py (8)| are 0(q~ M=k hecause of the
statistical distance
° IP’G,?(E) = IP’Hn_k(E) because codes defined by G, and H,_,, have the same distribution:
uniform over [n, R]q-codes.
4




DP: GENERATOR OR PARITY-CHECK MATRICES?

P'(n,q,R, 7). Let k %" |Rn] and t & |7n]

e Input: (G, yd_est + x) where G, s and x are uniformly distributed overngxn,IFg and words

of Hamming weight t.

e Output: anerrore € ]Fg of Hamming weight t such thaty — e = mG, for some m € ]Fg.

Exercise Session 1: any algorithm solving DP (n, g, R, ) with probability € can be turned
into an algorithm solving DP(n, g, R, 7) with probability > & — 0(q~ ™"(*:"=A))

(and reciprocally)

— Used arguments were the same: statistical distance, closeness with matrices of fixed rank
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WEIGHT DISTRIBUTION



OUR GOAL: COMPUTING THE NUMBER OF SOLUTIONS IN DP

Our Goal:

Given Hx ", we want to estimate:

He™ = Hx"
N=f{eeFg: and

le| =t

16



A FIRST COMPUTATION WITH RANDOM CODES

Fundamental Equality:

Given, s and y # 0 (fixed), H, < Unif (Fg”*h)xn), then:

pu (17 =57) =




A FIRST COMPUTATION WITH RANDOM CODES

Fundamental Equality:

Given, s and y # 0 (fixed), H, < Unif (Fg”*”)”), then:

1
qn—fe

Py (H yT :sT> =

Proof:

y # 0: there exists jo € [1,n] such that y;, # 0.  wewrite Hy" =sT

Vi€ [,n— K, h,,ofﬁ <s,7zy,h,j)

V2

as

Above n — k equations are true with probability 1/q as the h; ; are uniform and independent.

. k
Lattice analogue: — q

7F = o = 1] plays the role of IIWTI




EXPECTED NUMBER OF SOLUTIONS IN DP

Given (H JH.xT where |x| = t), we are ready to compute:

N(H H xT,t):ﬁ{eelFZ :lel=t and H eT:HxT}

Proposition:
We have, { }
- _ g{ecrl: le|=t}—1 (D@=nt-1
we> 0, By, (N (H, HxT 1) ) =14+ A0 =1+ )
Proof.
T _
N (HosHxT 1) = .2 Mo+
.e#x
We conclude by linearity of the expectation and the probability given in the previous slide. E])
Proposition:
Given any fixed s € ]Fg*'*, we have
n t
(9=1)
vt >0, Ey (N(H ,s,t)) = %
4

— When s = 0: average number of codewords of weight t 18



ASYMPTOTIC BEHAVIOUR

ﬁ{ee]Fg: le] :t} = (M-

MD@-1n"=e(3) q"'hq(%)

he(x) = —xlog, (ﬁ) — (1—x)log,(1 —x) (g-ary entropy)

. o 4 T _ _ _
Figure 1: H—I:Too 7 logg En (N (H , Hux ,t)) where |x] =t, g =3,k/n=1/4

as function of 7 = t/n. .



HARDNESS OF DP?

one solution one solution

Hard Easy Hard

0 (-r & R+ (1-R) & 1

_ exponentially many solutions +

20



OUR STUDY

In what follows: we will focus on

N(H ,s,t) :ﬁ{ee]Fg: le| = tand H eT:sT}

P> sis fixed an independent of H
> N(H ,S, t) is a random variable (according to H,) be defined as

N(H,S,t): E W{H eT:ST}

e: |e|=t

— The number of solutions of DP as distance t behaves as 1+ N(H ,S, t) J
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BE MORE ACCURATE: ORDER 1

n _nt
For now, only Ey (N(H ,S, t)) = (tzn(# is known

where N(H,, H ,t):u{ee]Fg : lel=tand H eT:sT}.

Be more precise?

First Moment Technique:

Foranya > 0, 1 ) o
Bu, (N(H., 5,0 > 0) < = - (t)(fi—k)
a q )
Proof.
| . : 1 (De=nt
By Markov inequality: Py (N(H ,s,t) > xc) < 1By (N(H,t)=1" e 5
V.

22



ORDER 27?

Issue:

n _nt
Py (N(H ,S, t) > g:) < 1. (tgsikﬂ

— We can only deduce that N(H,, s, t) > ais unlikely if a

Could we know N (H,,s,t) with accuracy?

— Yes! We used Markov inequality which is a very crude concentration inequality. . .

23



BIENAYME-TCHEBYCHEVS INEQUALITY

Proposition (admitted):

lets € Fg’k. Forany a > 0, we have,

n t n t
Py ( N¢(H,,s,t) — LtgnL_?) ’ > G) <€ =l 7(t)(q71)

n _nt
Suppose that (tzﬂ(%kn = 29(n)

Y eg_nt\ 3/4 N\ n_nt
— We can choose a = (%) =279 . (‘)n(%hn and then
q q

Y (g1t
we deduce that N¢(H,, s, t) = (13,5#(1 + o(1)) with probability exponentially close to one

24



MINIMUM DISTANCE



EXPECTED MINIMUM DISTANCE

Given H be a parity-check matrix. The number of codewords of weight t is given by
ﬁ{erFZ © x| =t and Hx" :0}
By choosing H uniformly at random:

n 71[
En (u{xng: x| =t and H,x" =o}) = 7(r3n(‘1k)
— We expect that the the minimum distance of a random code is given by
the minimum t such that

(%) ( )
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GILBERT-VARSHAMOV RADIUS

Gilbert-varshamov Radius:

Given g, n, k: Gilbert-Varshamov radius tgy is the smallest t such that:
MDa@=1'>¢"" <= ¢ - D@a-1) =7 )
Asymptotic Behaviour:
Given g, n, k where k/n =R,
tov _ =11 _
L = hy (1= R)(1+0(1)
def
y

27



DECODING PROBLEM AND GILBERT-VARSHAMOV RADIUS

The Gilbert-Varshamov radius gives the boundary where DP admits one solution (with

exponentially close to one probability) and exponentially many solutions

one solution one solution

Hard Easy Hard

0 (-R & R+ (1-R) & 1

_ exponentially many solutions +

TGV
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RANDOM CODES AND GILBERT-VARSHAMOV RADIUS

The Gilbert-Varshamov radius gives the minimum distance of a random code

Proposition

(n—Fk)

g " is uniformly chosen.

Let e > 0. Given C with parity-check matrix H. Suppose that H € F,
Then,

Py ((1 —e) Ty < o@D < (14 ). m) >1-g°" where a > 0.

29



BALLS AND MINIMUM DISTANCE (WORST-CASE)

Hamming Ball of center x € Fyy and radius . By(c, ) &f {y €EFy: ly—x < r}

Proposition:

For any [n, R]g-code C with minimum distance d,

ved €C, et = By (c [MmPT ) N8y (¢, [P )) = 0

—— The ¢ + e are distinct when |e| < dmin(C)/2and c € C

Be Careful:
Do not conclude that the “unique decoding regime” is given for errors

of Hamming weight < dmin(C)/2

— For random codes the situation is extremely different!
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BALLS AND MINIMUM DISTANCE (AVERAGE-CASE)

For a random code: dmin(C) = tey with probability exponentially close to 1

C be arandom code: J

Ve, €C, c# " Bu(c te) NBu (¢ ter) = 0

> Not GV!
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SUMMARY

> We have defined the model of random codes (via generator or parity-check point of view)
» We have computed the average number (over codes) of solutions of DP(g, n, k, t) given by

D @=1t=1
1y Qe

» An important quantity: Gilbert-Varshamov radius tcy as function of g, n, k
e to/n=h;'(1—R) where R = k/nand hq the g-ary entropy

e The minimum distance of a random code is given by ~ tsy with probability exponentially
close to one

e Regarding the number of solutions of DP:

. P t decoding radius

one solution with probability 1 — 2~%"
exponentially many solutions

n _nt
there are %(1 + 0(1)) solutions with probability 1 — 27"
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