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CODE-BASED CRYPTOGRAPHY

Goal:

Building cryptographic primitives whose security relies on

hardness of the average decoding problem

How does this problem behave as function of its parameters?

e.g. what is the number of solutions?
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COURSE OUTLINE

• A Quick Recap of Lecture 1

• Model of Random Codes

• Weight Distribution of Random Codes

• Minimum Distance of Random Codes
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A QUICK RECAP



AN OLD PROBLEM: DECODING

Shannon (1948/1949) introduced the following problem (decoding),

s

A

+

e

A
,

Aim:

Recover s

There are cryptosystems whose security relies on this problem: code-based cryptography(
McEliece 78, Alekhnovich 03, etc. . .

)
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TWO REPRESENTATIONS OF CODES

C be an [n, k]q-code, i.e., subspace of Fnq with dimension k

n length ; k dimension

C def
=
{
mG : m ∈ Fkq

}
G ∈ Fk×n

q rank k : generator matrix

C def
=
{
c ∈ Fnq : Hc⊺ = 0

}
H ∈ F(n−k)×n

q rank n− k : parity-check matrix
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AVERAGE DECODING PROBLEM

DP(n, q, R, τ), k def
= Rn and t def= τn

Sample: H ←− Unif
(
F(n−k)×n
q

)
, x ←− Unif

(
z : |z| = t

)

Input: H s = H x

,

Recover:
e

s.t H e
= s and e ∈

{
z : |z| = t

}
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RANDOM CODES: SOME MOTIVATION

Average Decoding Problem (DP)

• Sample: H← Unif
(
F(n−k)×n
q

)
, x← Unif

({
z ∈ Fnq : |z| = t

})
,

• Input: (H,Hx⊺),

• Output: e ∈ Fnq such that
{

He⊺ = Hx⊺

|e| = t

A trivial algorithm:

pick e ∈
{
z ∈ Fnq : |z| = t

}
and test if He⊺ = Hx⊺

• If one solution, probability of success: 1
♯
{
z∈Fnq : |z|=t

}

• If N solutions, probability of success: N
♯
{
z∈Fnq : |z|=t

}

What is the value of N?
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THE NUMBER OF SOLUTIONS?

To compute N: use the theory of random codes!

Random Code:

C =
{
c ∈ Fnq : Hc⊺ = 0

}
such that H←− Unif

(
F(n−k)×n
q

)
defines what is called a random code!
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MODEL OF RANDOM CODES



RANDOM CODES: TWO MODELS

And generator matrices?

Random Code(s):

• C =
{
mGu : m ∈ Fkq

}
where Gu ← Unif

(
Fk×n
q

)
or,

• C =
{
c ∈ Fnq : Huc⊺ = 0

}
where Hu ← Unif

(
F(n−k)×n
q

)

Are these models equivalent? Do they define a random [n, k]q-code?
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AT FIRST SIGHT

Random Code(s):

• C =
{
mGu : m ∈ Fkq

}
where Gu ← Unif

(
Fk×n
q

)
−→ dim C ≤ k as rank(Gu) ≤ k

• C =
{
c ∈ Fnq : Huc⊺ = 0

}
where Hu ← Unif

(
F(n−k)×n
q

)
−→ dim C ≥ k as rank(Hu) ≤ n− k

Both models do not seem to be equivalent. . . (Spoiler: they “are”!)
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AN IMPORTANT TOOL: STATISTICAL DISTANCE

Statistical Distance:

Let X and Y be random variables,

∆(X, Y) def
= 1

2
∑

a∈E |P (X = a)− P (Y = a)|

A Crucial Property: Data Processing Inequality

∆ (f(X), f(Y)) ≤ ∆ (X, Y)

Consequence: ∀A algorithm∣∣∣PX(A(X) = “success”
)
− PY

(
A(Y) = “success”

)∣∣∣ ≤ ∆(X, Y).
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SAME MODELS

Gu or Hu-models ⇐⇒ draw uniformly an [n, k]-code:

Gk ∈ Fk×n
q

(
Hn−k ∈ F(n−k)×n

q

)
be uniform of rank k (resp. n− k):

∆ (Gu, Gk) = O
(
q−(n−k)

) (
resp. ∆ (Hu,Hn−k) = O

(
q−k
))

Computation are the same in Gu and Hu-models:

Let E be a set of codes (defined as an event). We have,∣∣PGu (E)− PHu (E)
∣∣ = O

(
q−min(k,n−k)

)
.

Proof:∣∣PGu (E)− PHu (E)
∣∣ ≤ ∣∣∣PGu (E)− PGk (E)

∣∣∣ + ∣∣∣PHn−k (E)− PHu (E) +
∣∣∣PGk (E)− PHn−k (E)

∣∣∣
•
∣∣∣PGu (E)− PHu (E)

∣∣∣ and ∣∣∣PHn−k (E)− PHu (E)
∣∣∣ are O(q−min(k,n−k)) because of the

statistical distance

• PGk (E) = PHn−k (E) because codes defined by Gk and Hn−k have the same distribution:

uniform over [n, k]q-codes.
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DP: GENERATOR OR PARITY-CHECK MATRICES?

DP
′
(n, q, R, τ). Let k def

= ⌊Rn⌋ and t def= ⌊τn⌋

• Input: (Gu, y def
= sGu + x) where Gu, s and x are uniformly distributed over Fk×n

q , Fkq and words
of Hamming weight t.

• Output: an error e ∈ Fnq of Hamming weight t such that y− e = mGu for some m ∈ Fkq .

Exercise Session 1: any algorithm solving DP
′
(n, q, R, τ) with probability ε can be turned

into an algorithm solving DP(n, q, R, τ) with probability ≥ ε− O(q−min(k,n−k))(
and reciprocally

)

−→ Used arguments were the same: statistical distance, closeness with matrices of fixed rank
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WEIGHT DISTRIBUTION



OUR GOAL: COMPUTING THE NUMBER OF SOLUTIONS IN DP

Our Goal:

Given Hx⊤ , we want to estimate:

N = ♯

e ∈ Fnq :
He⊤ = Hx⊤
and
|e| = t


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A FIRST COMPUTATION WITH RANDOM CODES

Fundamental Equality:

Given, s and y ̸= 0 (fixed), Hu ← Unif
(
F(n−k)×n
q

)
, then:

PHu
(
Huy⊺ = s⊤

)
= 1

qn−k

Proof:

y ̸= 0: there exists j0 ∈ [1, n] such that yj0 ̸= 0. As Fq is a field, we write Huy⊤ = s⊤ as

∀i ∈ [1, n− k], hi,j0 = 1
yj0

(
si −

∑
j̸=j0

yjhi,j

)

Above n− k equations are true with probability 1/q as the hj,i are uniform and independent.

Lattice analogue: 1
qn−k = qk

qn = ♯C
♯Fnq

plays the role of 1
|Λ|
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EXPECTED NUMBER OF SOLUTIONS IN DP

Given
(
Hu,Hux⊤ where |x| = t

)
, we are ready to compute:

N
(
Hu,Hux⊤, t

)
= ♯
{
e ∈ Fnq : |e| = t and Hue⊺ = Hux⊤

}
.

Proposition:

We have,

∀t > 0, EHu
(
N
(
Hu,Hux⊤, t

))
= 1 +

♯
{
e∈Fnq : |e|=t

}
−1

qn−k = 1 +
(n
t
)
(q−1)t−1

qn−k

Proof.

N
(
Hu,Hux⊤, t

)
=

∑
e: |e|=t
e ̸=x

1{Hu(e−x)⊤=0} + 1

We conclude by linearity of the expectation and the probability given in the previous slide.

Proposition:

Given any fixed s ∈ Fn−k
q , we have

∀t > 0, EHu
(
N (Hu, s, t)

)
=

(n
t
)
(q−1)t

qn−k

−→ When s = 0: average number of codewords of weight t 18



ASYMPTOTIC BEHAVIOUR

♯
{
e ∈ Fnq : |e| = t

}
=
(n
t
)
(q− 1)t

(n
t
)
(q− 1)t = Θ

( 1
n
)
qn·hq

(
t
n
)

hq(x)
def
= −x logq

(
x

q−1

)
− (1− x) logq(1− x) (q-ary entropy)

1
τ00

 
τ− τ+

Figure 1: lim
n→+∞

1
n logq EHu

(
N
(
Hu,Hux⊤, t

))
where |x| = t, q = 3, k/n = 1/4

as function of τ = t/n.
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HARDNESS OF DP?

Hard HardEasy
τ

0 (1− R) q−1
q R + (1− R) q−1

q

τ+τ−

1

exponentially many solutions

one solution one solution
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OUR STUDY

In what follows: we will focus on

N
(
Hu, s, t

)
= ♯
{
e ∈ Fnq : |e| = t and Hue⊤ = s⊤

}

▶ s is fixed an independent of Hu

▶ N
(
Hu, s, t

)
is a random variable (according to Hu) be defined as

N
(
Hu, s, t

)
=

∑
e: |e|=t

1{Hue⊤=s⊤}

−→ The number of solutions of DP as distance t behaves as 1 + N
(
Hu, s, t

)
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BE MORE ACCURATE: ORDER 1

For now, only EHu
(
N (Hu, s, t)

)
=

(n
t
)
(q−1)t

qn−k is known

where N(Hu,Hu, t) = ♯
{
e ∈ Fnq : |e| = t and Hue⊺ = s⊤

}
.

Be more precise?

First Moment Technique:

For any a > 0,
PHu
(
N (Hu, s, t) > a

)
≤

1
a
·
(n
t
)
(q− 1)t

qn−k

Proof.

By Markov inequality: PHu
(
N (Hu, s, t) > a

)
≤ 1

a · EHu (N(Hu, t)) = 1
a ·
(n
t
)
(q−1)t

qn−k
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ORDER 2?

Issue:

PHu
(
N (Hu, s, t) > a

)
≤ 1

a ·
(n
t
)
(q−1)t

qn−k

−→ We can only deduce that N (Hu, s, t) > a is unlikely if a≫
(n
t
)
(q−1)t

qn−k

Could we know N (Hu, s, t) with accuracy?

−→ Yes! We used Markov inequality which is a very crude concentration inequality. . .
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BIENAYMÉ-TCHEBYCHEVS INEQUALITY

Proposition (admitted):

Let s ∈ Fn−k
q . For any a > 0, we have,

PHu
( ∣∣∣∣Nt(Hu, s, t)−

(n
t
)
(q−1)t

qn−k

∣∣∣∣ ≥ a
)
≤ q−1

a2
·
(n
t
)
(q−1)t

qn−k

Suppose that
(n
t
)
(q−1)t

qn−k = 2Ω(n)

−→ We can choose a =

((n
t
)
(q−1)t

qn−k

)3/4
= 2−Ω(n) ·

(n
t
)
(q−1)t

qn−k and then

we deduce that Nt(Hu, s, t) =
(n
t
)
(q−1)t

qn−k (1 + o(1)) with probability exponentially close to one
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MINIMUM DISTANCE



EXPECTED MINIMUM DISTANCE

Given H be a parity-check matrix. The number of codewords of weight t is given by

♯
{
x ∈ Fnq : |x| = t and Hx⊤ = 0

}
By choosing H uniformly at random:

EHu
(
♯
{
x ∈ Fnq : |x| = t and Hux⊤ = 0

})
=

(n
t
)
(q−1)t

qn−k

−→ We expect that the the minimum distance of a random code is given by

the minimum t such that(n
t
)
(q−1)t

qn−k ≥ 1
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GILBERT-VARSHAMOV RADIUS

Gilbert-Varshamov Radius:

Given q, n, k: Gilbert-Varshamov radius tGV is the smallest t such that:(n
t
)
(q− 1)t ≥ qn−k ⇐⇒ qk ·

(n
t
)
(q− 1)t ≥ qn

Asymptotic Behaviour:

Given q, n, k where k/n = R,

tGV
n =

n→+∞
h−1
q (1− R)︸ ︷︷ ︸
def
= τGV

(1 + o(1))
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DECODING PROBLEM AND GILBERT-VARSHAMOV RADIUS

The Gilbert-Varshamov radius gives the boundary where DP admits one solution (with

exponentially close to one probability) and exponentially many solutions

Hard HardEasy
τ

0 (1− R) q−1
q R + (1− R) q−1

q

τ+τ−

τGV

1

exponentially many solutions

one solution one solution
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RANDOM CODES AND GILBERT-VARSHAMOV RADIUS

The Gilbert-Varshamov radius gives the minimum distance of a random code

Proposition

Let ε > 0. Given C with parity-check matrix H. Suppose that H ∈ F(n−k)×n
q is uniformly chosen.

Then,

PH
(
(1− ε) · τGV ≤

dmin(C)

n ≤ (1 + ε) · τGV
)
≥ 1− q−αn where α > 0.
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BALLS AND MINIMUM DISTANCE (WORST-CASE)

Hamming Ball of center x ∈ Fnq and radius r: BH(c, r)
def
=
{
y ∈ Fnq : |y− x| ≤ r

}

Proposition:

For any [n, k]q-code C with minimum distance d,

∀c, c′ ∈ C, c ̸= c′ =⇒ BH
(
c, ⌊ dmin(C)−1

2 ⌋
)⋂
BH
(
c′, ⌊ dmin(C)−1

2 ⌋
)

= ∅

−→ The c + e are distinct when |e| < dmin(C)/2 and c ∈ C

Be Careful:

Do not conclude that the “unique decoding regime” is given for errors

of Hamming weight < dmin(C)/2

−→ For random codes the situation is extremely different!
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BALLS AND MINIMUM DISTANCE (AVERAGE-CASE)

For a random code: dmin(C) = tGV with probability exponentially close to 1

C be a random code:

∀c, c′ ∈ C, c ̸= c′ : BH (c, tGV)
⋂
BH
(
c′, tGV

)
≈ ∅

−→ Not tGV
2 !
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SUMMARY

▶ We have defined the model of random codes (via generator or parity-check point of view)

▶ We have computed the average number (over codes) of solutions of DP(q, n, k, t) given by

1 +
(n
t
)
(q−1)t−1

qn−k

▶ An important quantity: Gilbert-Varshamov radius tGV as function of q, n, k

• tGV/n = h−1
q (1− R) where R = k/n and hq the q-ary entropy

• The minimum distance of a random code is given by ≈ tGV with probability exponentially
close to one

• Regarding the number of solutions of DP:

t decoding radius
tGV

one solution with probability 1− 2−Ω(n)

exponentially many solutions

there are
(n
t
)
(q−1)t

qn−k (1 + o(1)) solutions with probability 1− 2−Ω(n)
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