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THE OBJECTIVE OF THE DAY

Aim of Any Code-Based Cryptosystem:
Security relies on the hardness of the Decoding Problem (DP) J

How to trust DP hardness?

— By designing and studying algorithms solving DP!

An Old History (since 60 years):
Best algorithms: refinement of Prange’s algorithm (1962)

Information Set Decoding (ISD) algorithms

— Also a different and recent approach which turns out to be competitive: Dual Attacks



COURSE OUTLINE

e Prange’s Algorithm
e Find Collisions: Dumer's Algorithm
e Information Set Decoding Algorithms (ISD)

e Generalization of ISD to Reach Any Weights




PRANGE'S ALGORITHM



TWO POINTS OF VIEW

Our Aim:

Describing Prange’s algorithm J

Two points of view:

e Noisy codewords and generator matrices

e Syndromes and parity-check matrices
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DON'T FORGET THE LINEAR ALGEBRA

e Given: C be an [n, R]g-code and y % ¢ + e where { \ce|€—ct

e Recover: e

Exhaustive Search: try all the ¢’ € Cuntil [y — ¢’| =t

— If unicity of the solution: cost given by #C = g

Don't forget that C is a linear subset!

To fix the intuition: suppose t (Hamming weight of the error) being small

How could we use the “linearity” of C knowing that t is small?



INFORMATION SET

First remark of Prange: use Information Sets!

Information Set:

7 C {1,...,n} of size kis an information set of the [n, k]4-C if:

vx € F: J(unique)c € C: ¢; =x (where cr = (c,v),€7,>

Every codewords: uniquely determined by k = dim(C) coordinates given by 7

How to recover ¢ € C fromy = ¢ + e where |e| =t by using information sets?

(t can be supposed smalt)




INFORMATION SET

First remark of Prange: use Information Sets!

Information Set:

7 C {1,...,n} of size kis an information set of the [n, k]4-C if:

vx € F: J(unique)c € C: ¢; =x (where cr = (c,v),€7,>

Every codewords: uniquely determined by k = dim(C) coordinates given by 7

How to recover ¢ € C fromy = ¢ + e where |e| =t by using information sets?

(t can be supposed smalt)

— Ifer =0 (no errors on I),

then computing the unique d € C such thatd; =y, givescasc; =vy-!



USING INFORMATION SETS

Given x € ]Fg and Z C [1, n] an information set, how to compute

the unique ¢ € C such that cz = x?

Information Set:

7 C {1,...,n} of size k, information set of of the [n, K]4-C if:

vx € F: J(unique)c € C: ¢; =x (vvhere cz = (c,),€I>

7 information set for C <= VG generator matrix of C, G; € IFZ” has rank k

< VG generator matrix of C, G is invertible

Given an information set 7, suppose that 7 — [1, k|, then, G}, ;) has rank k. By Gaussian

elimination:
SG = (I | A) (SUH generator matrix)

Given x € IFS,
c & xs6 = (x | xA) is the unique codeword such that ¢; = x




PRANGE'S ALGORITHM

sol C
van- def _sol sol e
e Given: C an [n, k]g-code and y = ¢ e*” where ool _ ¢

e Recover: e

1. Pick an information set 7,

2. Compute the unique ¢ € C such that

3. You win if |y — ¢| = t, namely

Otherwise, go back to 1.

Running time of the algorithm: number of times we pick 7 (times cost of Gaussian elimmation) J
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SYNDROMES AND PARITY-CHECK MATRICES

Fixing (H, s & HeT) where |e| = t.

Linear system: and
(n—R)xn
(1 e5)

But. ..
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SYNDROMES AND PARITY-CHECK MATRICES

Fixing (H, s & HeT) where |e| = t.
Linear system: and
(n—R)xn
(5
But. ..
with a (\e\ = t)

Fixing
Solving a square (n — k) x (n — R) linear system

Hoping the solution has the good Hamming weight otherwise repeat by fixing other k

coordinates to 0




PRANGE ALGORITHM WITH PARITY-CHECK MATRIX

Pick a set of k coordinates 7 randomly
— Suppose for the sake of simplicity that 7 = [n — k + 1, n]

1. Perform a Gaussian elimination,
SH = (In—k | A)

.
2. Compute, e’ = (Ss )

3. If |e| # t, then return to step 1 by choosing another set of n — k coordinates where

performing Gaussian elimination

1



RUNNING TIME OF PRANGE ALGORITHM

» If unicity of the solution, probability of success
p= (e
(D@
» If N solutions, probability of success
(n—k)(qi.‘)t
~ N X At 7
P (D@t

A (M) (a1t
— But the number of solutions is N = max (1, W)
Conclusion:
Running time of Prange’s algorithm (times the cost of Gaussian elimination),
—k
(EWICED)
min ("=, (1)(q = 1))

1 - . .
5 where p = probability of success of one iteration




PRANGE'S ALGORITHM: WHAT ELSE?

Prange’s algorithm: pick Z of size k and hope thatez = 0

Is it not too strong to suppose that there are no errors on Z,
ie,er =07 J
Natural idea: suppose there are p errorson 7, i.e, |ez| = p
— Compute all the codewords ¢ € C such that [cz —ys| =p

Better probability of success, but a cost (Z)(q — 1) per iteration (exponential)

(test all the zwith |z| = p as (yj,5 + 2) (Ik,A))

This algorithm is known as Lee-Brickell



FIND COLLISION: DUMER’S ALGORITHM



COME BACK TO THE EXHAUSTIVE SEARCH

To understand how has been improved we need to backtrack!

Come Back to the Exhaustive Search:

Given (H,sT <] HXT> with x| =t

— Try all the e with |e| and verify He T =s T

Dumer’s Idea:

Take advantage of the birthday paradox by looking for columns collision! J




BIRTHDAY PARADOX

How large should be a group of people for two of them to be born the same day?

16



BIRTHDAY PARADOX

How large should be a group of people for two of them to be born the same day?

— 23 & /365 is basically enough for this to be true with probability ~ 1/2

(number of pairs with 23 people, 252 ~ 365)
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BIRTHDAY PARADOX

How large should be a group of people for two of them to be born the same day?

— 23 & /365 is basically enough for this to be true with probability ~ 1/2

(number of pairs with 23 people, 252 ~ 365)

Birthday Paradox in Computer Science:

Generate lists £1, £, C {0,1}* with elements independently picked uniformly at random

How many elements do we expect in £4 N £L;?

— With L = v2¢ we expect one element in the intersection!

Proof.
Ly = ()(17 coo 7XL) and Ly = (y‘\7 soog YL), then
L

L L
§ L0 L= 3 Ygxyy, then ]E(j;t X rwz) =P =Y)=> &
i) pss 2
=1 i,j=1 i,j=1 O

16



DECODING REDUCES TO COMPUTE COLLISIONS

Dumer’s Idea: given (H, HxT)
1. Split Hin two, i.e, H = (Hy, Hy)

2. Compute the lists
E‘\:{H1ETZ e 77} and EZ:{STszeZT: e 7<}

3. Compute £4 N Ly, if it is non-empty it gives a solutions (es, €;)

if the solution x splits as (x1, X,) with [x;] = |x;| = t/2, then Dumer’s algorithm finds it

N Yoot/ (1) (g1)t/2
(I/Z)(q ) X(I/Z)(q ) ~ 1

— It happens with probabilit ~
pp p y (?)(0—1)‘




RUNNING TIME OF DUMER'S ALGORITHM

Dumer’s Idea: given (H, HxT)
1. Split H in two, i.e, H = (Hq, Hy)
2. Compute the lists

Cq:{H1e1T: e 7:} and LZ:{STszeQT: e 7%}

3. Compute £1 N Ly, if it is non-empty it gives solutions (eq, ;)

» Lists £; and £, have size
(D@=0" = /@=1  (usethat (})(q —1)" » g""o0/)

2
Na- /(e

» Intersection of lists £, N £, have size \/( =

qn—k qn—Fk
P Running time of Dumer’s algorithm:
7 BICED)
—_ Nt AR
(t) (a-1 + =
cost to builds lists cost to build intersections

n _nt
» Dumer’s Algorithm returns max (1, (13,5%) solutions of the decoding problem!



ADVANTAGES OF COLLISIONS

1. It returns all solutions of decoding problem

2. When decoding at distance tey for codes of rate k/n — 1,
Prange running time: "% ;  Dumer running time: v/q"—F

—— Quadratic improvement over Prange’s algorithm for these parameters!

3. Dumer’s algorithm returns solutions in amortized time one if

Oa-m =L = @)= ()’

19



BEST OF BOTH WORLDS?

Would it be possible to combine both Prange and Dumer’s approach?

— Yes! It corresponds to the birth of Information Set Decoding (ISD) algorithms

20



INFORMATION SET DECODING ALGORITHMS



KEY-IDEAS

Combination of Ideas:

> We want to keep the Prange bet

P> We want to use the fact that we can decode codes of rate k/n close to 1 with quadratic gain

over Prange

22



MATRIX POINT OF VIEW

Th_p— H’
SH = ( n g ¢ H”> where H” elst(“Z)

With this partial Gaussian elimination,

He' =s' «= SHe' =Ss

1 ke H/ e/T
<~ (“ o £ H”) <e//T

{E/T + H/e//T _ S/T

T

H//e//T — S//T

The Algorithm:
1. Solve the decoding problem at distance p by computing all the solutions:
H//e//T — s//T

— It corresponds to decode a code of dimension k and length k + £ at distance p

2. Deduce a solutions (e’, e’’)

— It will succeed if there are p errors on the window of size kR + ¢

23



SUMMARY

Two parameters in ISD: p and £

Information Set Decoding:

1. Select randomly a window of size kR + £

2. Solve a decoding problem at distance p for a code of dimension k and length k + £ but
compute all solutions. Deduce potential solutions

If a solution has an Hamming weight p on the window of size k + £ will obtain it. Otherwise
we repeat Step 1

y
P> Prange’s bet is step 1
» Use Dumer’s algorithm to solve step 2: nice approach as we can compute (for well-chosen p
and £) all solutions in amortized time 1
It Interpolates Prange and Dumer’ Algorithm:
Prange’s algorithm: £ =p =0 ; Dumer'salgorithm: £=n —kandp =t J

24



FURTHER IMPROVEMENT

To improve the previous algorithm:

Use “better” algorithm than Dumer to solve the sub-decoding problem at distance p

25



PRANGE’'S ALGORITHM FOR ANY WEIGHTS



WHICH DISTANCES ARE EASILY REACHED WITH PRANGE ALGORITHM?

Prange’s Algorithm
1. Perform a Gaussian elimination,

SH = (In— | A)

-
2. Compute, e’ = (Ss >

3. If |e| # t, then return to step 1 by choosing another set of n — k coordinates where

performing Gaussian elimination

By supposing that s is uniform, what is the typical weight of e after one iteration?

27



WHICH DISTANCES ARE EASILY REACHED WITH PRANGE ALGORITHM?

Prange’s Algorithm
1. Perform a Gaussian elimination,

SH = (In— | A)

-
2. Compute, e’ = (Ss >

3. If |e| # t, then return to step 1 by choosing another set of n — k coordinates where

performing Gaussian elimination

By supposing that s is uniform, what is the typical weight of e after one iteration?

lel = (0 — )

— The Hamming ‘%W(n — k) can easily be reached in Prange’s algorithm!

How could we reach larger weights easily?

27



WHAT ABOUT LARGE WEIGHTS?

Don't fix k unknowns to 0!

Generalized Prange’s Algorithm
1. Perform a Gaussian elimination,
SH= (In—k | A)

.
2. Compute, e’ = (Ss )

3. If |e| # t, then return to step 1 by choosing another set of n — k coordinates where

performing Gaussian elimination

By supposing that s is uniform, what is the typical weight of e after one iteration?
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WHAT ABOUT LARGE WEIGHTS?

Don't fix k unknowns to 0!

Generalized Prange’s Algorithm
1. Perform a Gaussian elimination,
SH= (In—k | A)

.
2. Compute, e’ = (Ss )

3. If |e| # t, then return to step 1 by choosing another set of n — k coordinates where

performing Gaussian elimination

By supposing that s is uniform, what is the typical weight of e after one iteration?

le| = Ix| + 952 (n — k)

— X € ]Fg, by carefully choosing |x| € [1, k] we can reach easily any weight in the interval

[QT”(n — k), R+ (n — fe)]
28



CONCLUSION

(R:k/n and T:t/n)

one solution one solution

Hard Hard

Easy

0 (W—R)QT’W R+(1—R)”T’1 1

_ exponentially many solutions +

29



PROGRAMMING SESSION
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