
LECTURE 3
INFORMATION SET DECODING ALGORITHMS
Summer School: Introduction to Quantum-Safe Cryptography

Thomas Debris-Alazard

July 03, 2024

Inria, École Polytechnique

THE OBJECTIVE OF THE DAY

Aim of Any Code-Based Cryptosystem:

Security relies on the hardness of the Decoding Problem (DP)

How to trust DP hardness?

−→ By designing and studying algorithms solving DP!

An Old History (since 60 years):

Best algorithms: refinement of Prange’s algorithm (1962)

Information Set Decoding (ISD) algorithms

−→ Also a different and recent approach which turns out to be competitive: Dual Attacks

1

COURSE OUTLINE

• Prange’s Algorithm

• Find Collisions: Dumer’s Algorithm

• Information Set Decoding Algorithms (ISD)

• Generalization of ISD to Reach Any Weights

2

PRANGE’S ALGORITHM

TWO POINTS OF VIEW

Our Aim:

Describing Prange’s algorithm

Two points of view:

• Noisy codewords and generator matrices

• Syndromes and parity-check matrices

4

TWO POINTS OF VIEW

Our Aim:

Describing Prange’s algorithm

Two points of view:

• Noisy codewords and generator matrices

• Syndromes and parity-check matrices

4

DON’T FORGET THE LINEAR ALGEBRA

• Given: C be an [n, k]q-code and y def
= c + e where

{
c ∈ C
|e| = t

• Recover: e

Exhaustive Search: try all the c′ ∈ C until |y− c′| = t

−→ If unicity of the solution: cost given by ♯C = qk

Don’t forget that C is a linear subset!

To fix the intuition: suppose t (Hamming weight of the error) being small

How could we use the “linearity” of C knowing that t is small?

5

INFORMATION SET

First remark of Prange: use Information Sets!

Information Set:

I ⊆ {1, . . . , n} of size k is an information set of the [n, k]q-C if:

∀x ∈ Fkq : ∃(unique) c ∈ C : cI = x
(
where cI = (ci)i∈I

)

Every codewords: uniquely determined by k = dim(C) coordinates given by I

How to recover c ∈ C from y = c + e where |e| = t by using information sets?(
t can be supposed small

)

−→ If eI = 0
(
no errors on I

)
,

then computing the unique d ∈ C such that dI = yI gives c as cI = yI !

6

INFORMATION SET

First remark of Prange: use Information Sets!

Information Set:

I ⊆ {1, . . . , n} of size k is an information set of the [n, k]q-C if:

∀x ∈ Fkq : ∃(unique) c ∈ C : cI = x
(
where cI = (ci)i∈I

)

Every codewords: uniquely determined by k = dim(C) coordinates given by I

How to recover c ∈ C from y = c + e where |e| = t by using information sets?(
t can be supposed small

)

−→ If eI = 0
(
no errors on I

)
,

then computing the unique d ∈ C such that dI = yI gives c as cI = yI !

6

USING INFORMATION SETS

Given x ∈ Fkq and I ⊆ [1, n] an information set, how to compute

the unique c ∈ C such that cI = x?

Information Set:

I ⊆ {1, . . . , n} of size k, information set of of the [n, k]q-C if:

∀x ∈ Fkq : ∃(unique) c ∈ C : cI = x
(
where cI = (ci)i∈I

)

I information set for C ⇐⇒ ∀G generator matrix of C, GI ∈ Fk×k
q has rank k

⇐⇒ ∀G generator matrix of C, GI is invertible

Given an information set I , suppose that I = [1, k], then, G[1,k] has rank k. By Gaussian

elimination:
SG = (Ik | A)

(
still generator matrix

)
Given x ∈ Fkq ,

c def
= xSG = (x | xA) is the unique codeword such that cI = x

7

PRANGE’S ALGORITHM

• Given: C an [n, k]q-code and y def
= csol + esol where

{
csol ∈ C∣∣∣esol∣∣∣ = t

• Recover: esol

1. Pick an information set I ,

2. Compute the unique c ∈ C such that
cI = yI

3. You win if |y− c| = t, namely
yI = csolI ⇐⇒ esolI = 0

Otherwise, go back to 1.

Running time of the algorithm: number of times we pick I
(
times cost of Gaussian elimination

)

8

TWO POINTS OF VIEW

Our Aim:

Describing Prange’s algorithm

Two points of view:

• Noisy codewords and generator matrices

• Syndromes and parity-check matrices

9

SYNDROMES AND PARITY-CHECK MATRICES

Fixing
(
H, s def

= He⊺
)
where |e| = t.

−→ Linear system: n− k equations and n unknowns(
H ∈ F(n−k)×n

q

)
But. . .

with a non-linear constraint
(
|e| = t

)

Prange’s Algorithm:

1. Fixing a random set of k unknowns to 0

2. Solving a square (n− k) × (n− k) linear system

3. Hoping the solution has the good Hamming weight otherwise repeat by fixing other k
coordinates to 0

10

SYNDROMES AND PARITY-CHECK MATRICES

Fixing
(
H, s def

= He⊺
)
where |e| = t.

−→ Linear system: n− k equations and n unknowns(
H ∈ F(n−k)×n

q

)
But. . .

with a non-linear constraint
(
|e| = t

)

Prange’s Algorithm:

1. Fixing a random set of k unknowns to 0

2. Solving a square (n− k) × (n− k) linear system

3. Hoping the solution has the good Hamming weight otherwise repeat by fixing other k
coordinates to 0

10

SYNDROMES AND PARITY-CHECK MATRICES

Fixing
(
H, s def

= He⊺
)
where |e| = t.

−→ Linear system: n− k equations and n unknowns(
H ∈ F(n−k)×n

q

)
But. . .

with a non-linear constraint
(
|e| = t

)

Prange’s Algorithm:

1. Fixing a random set of k unknowns to 0

2. Solving a square (n− k) × (n− k) linear system

3. Hoping the solution has the good Hamming weight otherwise repeat by fixing other k
coordinates to 0

10

PRANGE ALGORITHM WITH PARITY-CHECK MATRIX

Pick a set of k coordinates I randomly

−→ Suppose for the sake of simplicity that I = [n− k + 1, n]

1. Perform a Gaussian elimination,
SH = (In−k | A)

2. Compute, e⊤ =

(
Ss⊤
0

)
3. If |e| ̸= t, then return to step 1 by choosing another set of n− k coordinates where

performing Gaussian elimination

11

RUNNING TIME OF PRANGE ALGORITHM

▶ If unicity of the solution, probability of success

p =

(n−k
t
)
(q−1)t(n

t
)
(q−1)t

▶ If N solutions, probability of success

p ≈ N×
(n−k

t
)
(q−1)t(n

t
)
(q−1)t

−→ But the number of solutions is N = max

(
1,
(n
t
)
(q−1)t

qn−k

)

Conclusion:

Running time of Prange’s algorithm (times the cost of Gaussian elimination),

1
p

where p =

(n−k
t
)
(q− 1)t

min
(
qn−k,

(n
t
)
(q− 1)t

) probability of success of one iteration

12

PRANGE’S ALGORITHM: WHAT ELSE?

Prange’s algorithm: pick I of size k and hope that eI = 0

Is it not too strong to suppose that there are no errors on I ,

i.e., eI = 0?

Natural idea: suppose there are p errors on I , i.e., |eI | = p

−→ Compute all the codewords c ∈ C such that |cI − yI | = p

Better probability of success, but a cost
(k
p
)
(q− 1)p per iteration (exponential)

(
test all the z with |z| = p as

(
y[1,k] + z

)
(Ik, A)

)
This algorithm is known as Lee-Brickell

13

FIND COLLISION: DUMER’S ALGORITHM

COME BACK TO THE EXHAUSTIVE SEARCH

To understand how has been improved we need to backtrack!

Come Back to the Exhaustive Search:

Given
(
H, s⊤ def

= Hx⊤
)
with |x| = t

−→ Try all the e with |e| and verify He⊤ ?
= s⊤

Dumer’s Idea:

Take advantage of the birthday paradox by looking for columns collision!

15

BIRTHDAY PARADOX

How large should be a group of people for two of them to be born the same day?

−→ 23 ≈
√
365 is basically enough for this to be true with probability ≈ 1/2(

number of pairs with 23 people, 23×22
2 ≈ 365

)

Birthday Paradox in Computer Science:

Generate lists L1,L2 ⊆ {0, 1}ℓ of size L with elements independently picked uniformly at random

How many elements do we expect in L1 ∩ L2?

E
(
♯ L1 ∩ L2

)
= L2

2ℓ

−→ With L =
√
2ℓ we expect one element in the intersection!

Proof.

L1 = (X1, . . . , XL) and L2 = (Y1, . . . , YL), then

♯ L1 ∩ L2 =
L∑

i,j=1
1{Xi=Yj} , then E

(
♯ L1 ∩ L2

)
=

L∑
i,j=1

P(Xi = Yj) =
L∑

i,j=1

1
2ℓ

16

BIRTHDAY PARADOX

How large should be a group of people for two of them to be born the same day?

−→ 23 ≈
√
365 is basically enough for this to be true with probability ≈ 1/2(

number of pairs with 23 people, 23×22
2 ≈ 365

)

Birthday Paradox in Computer Science:

Generate lists L1,L2 ⊆ {0, 1}ℓ of size L with elements independently picked uniformly at random

How many elements do we expect in L1 ∩ L2?

E
(
♯ L1 ∩ L2

)
= L2

2ℓ

−→ With L =
√
2ℓ we expect one element in the intersection!

Proof.

L1 = (X1, . . . , XL) and L2 = (Y1, . . . , YL), then

♯ L1 ∩ L2 =
L∑

i,j=1
1{Xi=Yj} , then E

(
♯ L1 ∩ L2

)
=

L∑
i,j=1

P(Xi = Yj) =
L∑

i,j=1

1
2ℓ

16

BIRTHDAY PARADOX

How large should be a group of people for two of them to be born the same day?

−→ 23 ≈
√
365 is basically enough for this to be true with probability ≈ 1/2(

number of pairs with 23 people, 23×22
2 ≈ 365

)

Birthday Paradox in Computer Science:

Generate lists L1,L2 ⊆ {0, 1}ℓ of size L with elements independently picked uniformly at random

How many elements do we expect in L1 ∩ L2?

E
(
♯ L1 ∩ L2

)
= L2

2ℓ

−→ With L =
√
2ℓ we expect one element in the intersection!

Proof.

L1 = (X1, . . . , XL) and L2 = (Y1, . . . , YL), then

♯ L1 ∩ L2 =
L∑

i,j=1
1{Xi=Yj} , then E

(
♯ L1 ∩ L2

)
=

L∑
i,j=1

P(Xi = Yj) =
L∑

i,j=1

1
2ℓ

16

DECODING REDUCES TO COMPUTE COLLISIONS

Dumer’s Idea: given
(
H,Hx⊤

)
1. Split H in two, i.e., H = (H1,H2)

2. Compute the lists

L1 =
{
H1e⊤1 : |e1| = t

2

}
and L2 =

{
s⊤ − H2e⊤2 : |e2| = t

2

}
3. Compute L1 ∩ L2 , if it is non-empty it gives a solutions (e1, e2)

if the solution x splits as (x1, x2) with |x1| = |x2| = t/2, then Dumer’s algorithm finds it

−→ It happens with probability
(n
t/2
)
(q−1)t/2×

(n
t/2
)
(q−1)t/2(n

t
)
(q−1)t

≈ 1

17

RUNNING TIME OF DUMER’S ALGORITHM

Dumer’s Idea: given
(
H,Hx⊤

)
1. Split H in two, i.e., H = (H1,H2)

2. Compute the lists

L1 =
{
H1e⊤1 : |e1| = t

2

}
and L2 =

{
s⊤ − H2e⊤2 : |e2| = t

2

}
3. Compute L1 ∩ L2 , if it is non-empty it gives solutions (e1, e2)

▶ Lists L1 and L2 have size(n/2
t/2
)
(q− 1)t/2 ≈

√(n
t
)
(q− 1)t

(
use that

(n
u
)
(q− 1)u ≈ qn·hq(u/n)

)

▶ Intersection of lists L1 ∩ L2 have size

√(n
t
)
(q−1)t

2

qn−k =

√(n
t
)
(q−1)t

qn−k

▶ Running time of Dumer’s algorithm:√(n
t

)
(q− 1)t︸ ︷︷ ︸

cost to builds lists

+

(n
t
)
(q− 1)t

qn−k︸ ︷︷ ︸
cost to build intersections

▶ Dumer’s Algorithm returns max

(
1,
(n
t
)
(q−1)t

qn−k

)
solutions of the decoding problem!

18

ADVANTAGES OF COLLISIONS

1. It returns all solutions of decoding problem

2. When decoding at distance tGV for codes of rate k/n → 1,

Prange running time: qn−k ; Dumer running time:
√
qn−k

−→ Quadratic improvement over Prange’s algorithm for these parameters!

3. Dumer’s algorithm returns solutions in amortized time one if

√(n
t
)
(q− 1)t =

(n
t
)
(q−1)t

qn−k ⇐⇒
(n
t
)
=
(
qn−k

)2

19

BEST OF BOTH WORLDS?

Would it be possible to combine both Prange and Dumer’s approach?

−→ Yes! It corresponds to the birth of Information Set Decoding (ISD) algorithms

20

INFORMATION SET DECODING ALGORITHMS

KEY-IDEAS

Combination of Ideas:
▶ We want to keep the Prange bet

▶ We want to use the fact that we can decode codes of rate k/n close to 1 with quadratic gain

over Prange

22

MATRIX POINT OF VIEW

SH =

(
1n−k−ℓ H′

0 H′′

)
where H′′ ∈ Fℓ×(k+ℓ)

q

With this partial Gaussian elimination,

He⊤ = s⊤ ⇐⇒ SHe⊤ = Ss⊤

⇐⇒
(
1n−k−ℓ H′

0 H′′

)(
e′⊤

e′′⊤

)

⇐⇒
{
e′⊤ + H′e′′⊤ = s′⊤

H′′e′′⊤ = s′′⊤

The Algorithm:

1. Solve the decoding problem at distance p by computing all the solutions:
H′′e′′⊤ = s′′⊤

−→ It corresponds to decode a code of dimension k and length k + ℓ at distance p

2. Deduce a solutions (e′, e′′)

−→ It will succeed if there are p errors on the window of size k + ℓ

23

SUMMARY

Two parameters in ISD: p and ℓ

Information Set Decoding:

1. Select randomly a window of size k + ℓ

2. Solve a decoding problem at distance p for a code of dimension k and length k + ℓ but
compute all solutions. Deduce potential solutions

3. If a solution has an Hamming weight p on the window of size k + ℓ will obtain it. Otherwise
we repeat Step 1

▶ Prange’s bet is step 1

▶ Use Dumer’s algorithm to solve step 2: nice approach as we can compute (for well-chosen p
and ℓ) all solutions in amortized time 1

It Interpolates Prange and Dumer’ Algorithm:

Prange’s algorithm: ℓ = p = 0 ; Dumer’s algorithm: ℓ = n− k and p = t

24

FURTHER IMPROVEMENT

To improve the previous algorithm:

Use “better” algorithm than Dumer to solve the sub-decoding problem at distance p

25

PRANGE’S ALGORITHM FOR ANY WEIGHTS

WHICH DISTANCES ARE EASILY REACHED WITH PRANGE ALGORITHM?

Prange’s Algorithm

1. Perform a Gaussian elimination,
SH = (In−k | A)

2. Compute, e⊤ =

(
Ss⊤
0

)
3. If |e| ̸= t, then return to step 1 by choosing another set of n− k coordinates where

performing Gaussian elimination

By supposing that s is uniform, what is the typical weight of e after one iteration?

|e| = q−1
q (n− k)

−→ The Hamming q−1
q (n− k) can easily be reached in Prange’s algorithm!

How could we reach larger weights easily?

27

WHICH DISTANCES ARE EASILY REACHED WITH PRANGE ALGORITHM?

Prange’s Algorithm

1. Perform a Gaussian elimination,
SH = (In−k | A)

2. Compute, e⊤ =

(
Ss⊤
0

)
3. If |e| ̸= t, then return to step 1 by choosing another set of n− k coordinates where

performing Gaussian elimination

By supposing that s is uniform, what is the typical weight of e after one iteration?

|e| = q−1
q (n− k)

−→ The Hamming q−1
q (n− k) can easily be reached in Prange’s algorithm!

How could we reach larger weights easily?

27

WHAT ABOUT LARGE WEIGHTS?

Don’t fix k unknowns to 0!

Generalized Prange’s Algorithm

1. Perform a Gaussian elimination,
SH = (In−k | A)

2. Compute, e⊤ =

(
Ss⊤
x

)
3. If |e| ̸= t, then return to step 1 by choosing another set of n− k coordinates where

performing Gaussian elimination

By supposing that s is uniform, what is the typical weight of e after one iteration?

|e| = |x| + q−1
q (n− k)

−→ x ∈ Fkq , by carefully choosing |x| ∈ [1, k] we can reach easily any weight in the interval[
q−1
q (n− k), k + q−1

q (n− k)
]

28

WHAT ABOUT LARGE WEIGHTS?

Don’t fix k unknowns to 0!

Generalized Prange’s Algorithm

1. Perform a Gaussian elimination,
SH = (In−k | A)

2. Compute, e⊤ =

(
Ss⊤
x

)
3. If |e| ̸= t, then return to step 1 by choosing another set of n− k coordinates where

performing Gaussian elimination

By supposing that s is uniform, what is the typical weight of e after one iteration?

|e| = |x| + q−1
q (n− k)

−→ x ∈ Fkq , by carefully choosing |x| ∈ [1, k] we can reach easily any weight in the interval[
q−1
q (n− k), k + q−1

q (n− k)
]

28

CONCLUSION

(
R = k/n and τ = t/n

)

Hard HardEasy
τ

0 (1− R) q−1
q R + (1− R) q−1

q

τ+τ−

1

exponentially many solutions

one solution one solution

29

PROGRAMMING SESSION

30

	Prange's Algorithm
	Find Collision: Dumer's Algorithm
	Information Set Decoding Algorithms
	Prange's Algorithm for Any Weights

