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BUT DON'T FORGET...
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THE OBJECTIVE OF THE DAY

Aim of Any Code-Based Cryptosystem:
Security relies on the hardness of the Decoding Problem (DP) J

How to trust DP hardness?

> Test of time (designing & studying algorithms solving the decoding problem)

» Reduction: prove that decoding is harder than another hard problem

— We will focus on reductions



COURSE OUTLINE

e A Quick Recap: Decoding Random Codes, an Average Case
e Worst-to-Average-Case Reduction: Framework
e Smoothing Parameter

e Fourier Transform in the Hamming Cube




THE AVERAGE DECODING PROBLEM



LINEAR CODES AND HAMMING WEIGHT

Today: focus on binary codes (for the sake of simplicity)

Linear Codes: Primal Representation
A linear code C is a subspace of F)

Basis/Generator matrix representation: rows of A € ]F’Z?X” form a basis,

C:{SA: SGF;’}

The vector/matrix multiplication sA is the collection of inner-products

(s,ar),...,(s,an) where a;columnofA and (x,y) & Xy € F

Hamming Weight:

vx € FJ, |x| e

{i€[1,n]:x,7é0} J




BERNOULLI RANDOM VARIABLE

1—p ifx=0

> e+ Ber(p)®": the e/'s are independent and P(e; = x) = { . iy — 1

Chernoff's Bound: Ber(p)®" concentrates over words of Hamming weight ~ np
Given e « Ber(p)®",

E(le]) =np and ]P’(“e|fnp) 25n> gZe’E”2

First approximation: Ber(p)®n is a uniform vector of Hamming weight np



AVERAGE DECODING PROBLEM

Some slight variation of the decoding problem

DP(n, k, t): Average Decoding Problem

e Input: (A, sA +t) where A € F¥X", s € F% are uniform and t < Ber(t/n)

e OQutput: recovering s

Algorithm A solving DP in time T and probability e means

e ArunsintimeT,

e Given A, s uniform and t « Ber(p)®",
Past(A(ASA+1)=5s)=¢



YOU SAID AVERAGE CASE?

> Given (A,s) € F**" x F§ uniform and t « Ber(p)®",

IP’A,:;,«L(A (A,sA+1) = s) =

Law of Total Probability:
=Sl B % X P(A(R,SA+t) =s0) pl(1—p)'"
N ——’

so-ho T to: ftol=t
Py(t=to)

— =: average success probability of A over all possible inputs

= small = A fails for almost all instances

Assumption in Code-Based Cryptography:
DP is hard, i.e, for any algorithm, T/e is large J




TEST OF TIME, WHAT ELSE?

To Ensure Hardness of DP ( ):

1. Test of time (designing & studying algorithms solving DP)

2. Reductions:

(i) computes (quantumly) short vectors in the dual code

(ii) solves all instances of another decoding problem (worst-case)




TEST OF TIME, WHAT ELSE?

To Ensure Hardness of DP (Average Hardness):

1. Test of time (designing & studying algorithms solving DP)

2. Reductions: solving the decoding problem on average implies an algorithm which

(i) computes (quantumly) short vectors in the dual code

(if) solves all instances of another decoding problem (worst-case)




WORST-TO-AVERAGE CASE REDUCTION



OUR GOAL

Given a fixed instance

(G, xG + r) where Hamming weight of r is w

we want to recover r

But, we only have an algorithm A solving DP with probability &

Pa,s,t (A(A, SA+1) = t) — e



THE APPROACH

Key-idea:
From (G, xG + r) build a “uniform decoding” instance being fed to A J

1. e, < D (distribution)

2. Compute,
,e) = (xG,e) +(r,e)=( x ,eG")+(re
(v, e} = )+ (rne) = (X )+ (re)

secret noise

Packing Instances Together:
o Build the matrix A = (a;) whose columns are the e G

e Try to decode (A, ({y,e);)) = (A, xA +t) wheret = ((r,e))




THE ISSUE

From the fixed decoding instance G, xG + r, we build

(v.e) = (x6,€) +(r,€) = (x_,eG") + (r.e)

secret noise

Packing Instances Together:
o Build the matrix A = (a;) whose columns are the e,G"

e Try to decode (A, ((y,€);)) = (A,xA +t) where t = ((r, e)),

— Feed (A, ({y, e/);)) to the average decoding algorithm \A. But what happens?

» Columns of A, i.e, G ", are not uniform
> Noise (r,e/) and e;G" are correlated

P> How does (r, e;) behave?

Our Goal:
Estimate success probability of A being fed with the biased instance (A, ({y, );)) J
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CLOSENESS: STATISTICAL DISTANCE

Statistical Distance:

Given two random variables X, Y,

A(XY) = A(f,9) = %Z [P(X = a) — P(Y = a)]|

— It captures the differences between two random variables

e Data processing inequality: for any function/algorithm h
A(h(X), h(Y)) < A(X,Y)
e Foranyeventé&,

[B(X € £) — B(Y € £)] < A(X,Y)

If an algorithm succeeds with inputs X and probability e, then it succeeds given Y with

probability € + A(X,Y)



OUR AIM

True average decoding instance

“ /

T T
A((e6T, (xeG ) +(re)). (@, (xa)+ e )
uniform same distrib as (r, e;)

2. We feed (e G',(x,eG")+ (re >) to the decoding-solver A with success probability e

3. If we give n samples to A, it will recover x with probability e

Simplification:

uniform

Target: A (e G', a ) small when G is fixed but e, random variable.
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A GEOMETRICAL INTERPRETATION: PRIMAL REPRESENTATION
Aim: A (eGT, a ) small

Which object is eG " ?

Take the code C C Fj point of view
c={c: " =0} J

— eG " defines a coset of C

Primal Representation:

eG " uniform <= uniform in FJ/C, i.e. uniform modulo C

eG ' uniform for e «— D <= ¢ + e uniform in F} where c +— C and e « D




POTATOES

¢ + e uniform in F} where c&” cand e «+— D J

Starting from codewords and adding noise

O cecC

after adding noise




POTATOES

¢ + e uniform in F} where c&” cand e «+— D J

Starting from codewords and adding noise

O cecC

after adding noise

— To be uniform: necessary to cover the whole space after adding noise!



COMBINATORICS POINT OF VIEW: GILBERT-VARSHAMOV RADIUS

¢ + e uniform in F} where ¢ & cande +— D

If e concentrates over words of Hamming weight < t, it is necessary that

tissuch that: §C - () > 2" J

19



COMBINATORICS POINT OF VIEW: GILBERT-VARSHAMOV RADIUS

¢ + e uniform in F} where ¢ & cande +— D

If e concentrates over words of Hamming weight < t, it is necessary that

tissuch that: §C - () > 2" J

Gilbert-vVarshamov Radius of C:

tey: smallest radius to such that $C - (tg) > 2" J

If one targets ¢ + e uniform with e concentrating over words of Hamming weight t,

then one wants t as small as possible which is tgy

But why?

19



THE REDUCTION IN A NUTSHELL

An algorithm solving the average decoding problem with noise
ei = (r,e;) whereej +— D

implies an algorithm solving the fixed decoding problem (G, XG + r)

20



THE REDUCTION IN A NUTSHELL

The average decoding problem with noise
ei = (r,e;) whereej +— D

is harder than solving the fixed decoding problem (G, xG + r)
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THE REDUCTION IN A NUTSHELL

The average decoding problem with noise
ei = (r,e;) whereej +— D

is harder than solving the fixed decoding problem (G, xG + r)

Ideal Situation:

The reduction works with P ({r, e;) = 1) is small

Because in cryptography we use the assumption that average decoding is hard
for a noise e with P(e = 1) small

— To ensure P ({r, e;) = 1) is small we need to choose e; concentrating over words

of small Hamming weight
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ABOUT THE NOISE DISTRIBUTION



THE NOISE: OUR BEST FRIEND TO UNIFORMIZE

Our Aim:

To find e +— D such that ¢ + e is close (statistical distance) to uniform when ¢ & e J

A First Approach:
Choose each bit of e with probability 1/2, then ¢ 4 e is uniform J

But, doing this is useless: (r, e) will be a uniform noise. ..

Therefore, impossible to solve (eG ™, (x,eG" ) + (r, e))
N

noise

— We need to carefully choose e!
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OUR GOAL

Given a Linear Code C C FJ: we want

¢+ e to be uniform where ¢ & cande « D (free choice in the reduction) J

S; be the Hamming-sphere with radius t
If D concentrates over S,
ic- (1) >2" = t>tq

A Lower-Bound on the Amount of Noise:

If noise concentrates on sphere with radius t: necessarily t > tqy J
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SOME NOTATION

Notation:

e unif: uniform distribution of F}

e 1c: indicator function of C

e Convolution, f* g(x) & Zyew‘g fy)a(x =)

IfX <= fand Y < g are independent, then X+ Y < f*x g

If f: concentrates over words of weight t. Smoothing parameter is the smallest t such that,

1% *f1(x) — unif(x)

A(;%*f,unif) = gxz

n
EIFZ

Our Dream:

A (;% * ft, unif) is negligible as soon as t = tey(1+ 0(1)),

24



CAUCHY-SCHWHARZ: PARSEVAL'S WORLD

;
We want: %

e * f; close to uniform

SO, X ;% * fr(x) — unif(x)’ will be roughly constant!

Any idea to upper-bound tightly > H% * ft(x) — unif(x)|?
x€FY

25



CAUCHY-SCHWHARZ: PARSEVAL'S WORLD

We want: ;% * f; close to uniform

SO, X ;% * fr(x) — unif(x)’ will be roughly constant!
Any idea to upper-bound tightly > H% * ft(x) — unif(x)|?
x€FY

A Good Idea: Cauchy-Schwarz

>

xeFy)

e * fr(x) — unif(x)

2
i <V | > (LC * fu(X) — unif(x))

xeFy) ie

— The upper-bound: L,-distance!

A natural approach: Parseval's identity via Fourier Theory

25



FOURIER TRANSFORM IN THE HAMMING CUBE



FOURIER TRANSFORM (INFORMAL)

Fourier Transform (informal): J

It decomposes a function in the Fourier basis

But how is defined the Fourier basis?

27



FOURIER TRANSFORM (INFORMAL)

Fourier Transform (informal): J

It decomposes a function in the Fourier basis

But how is defined the Fourier basis?

— Basis that diagonalizes (per-block in non-abelian case) translation operators!

Hamming Cube Case:

Given the translation operator R(t) for functions f : F; — C,
R(t): f— (g:x € F) —> g(x + 1))

It is diagonal in the character basis (Xy DX — (—1)<"*y>),

R (xy) = (DY - xy
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FOURIER TRANSFORM IN THE HAMMING CUBE

e Scalar product and associated norms:

(.9 5 3 fnaw) and I £ /0

n
yETFz

e An orthonormal basis, characters:

xx(y) & (=1)"

Fourier Transform:
Givenf:F, — C,
)= 5 5 fxaly) = V2 {fx0)

yery

e Convolution:

fxg=v2 -3
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PARSEVAL'S IDENTITY

Parseval Identity: Fourier Transform Isometry for L,

If — all> = Iif — ll2 J

Proof.

Given any function h : F; — C, as (XX)xeth is an orthonormal basis,

h= % (hxd - xx and [IhlE = 3 |(h, xx)
x€F) x€Fy)

2 1 —~ 2 =~
= # % [Aeo]" = 12
xeFy)
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DUALITY

— For our purpose: we need to compute T

Dual Code:
Given C C ),

n
CLd:ef{xeng’: vy € Y, inyizo}:{xeﬁg: vy € C, XX(y):1}

i=1

Fourier Transform of the Code Indicator:

1101

Te =

— This result is known as “Poisson summation” formula!
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FOURIER TRANSFORM UNIFORM FUNCTION

— We also need to compute unit where unif(x) = Zin forany x € F}

Fourier Transform of the Uniform Function:
unif = ﬁ -8 Wwhere &o(x) = 0if x # 0 and 1 otherwise (Kronecker delta) J
Proof.
VI i) = 3 unifyhay) = 2 S0
yEF) yEF)
But,
S (=)%Y = 0 when x # 0.
VEF;
Indeed, when x # 0, z # 0 such that (x,z) # 0 mod 2 and
T = (e — e 3 e
YEF] yEF] yEF]
As (—1)*2 =1, the above equality is only possible if 33 (—1)*¥ = o. O
yEF)
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SMOOTHING PARAMETER: AN UPPER-BOUND

A(u—c *ft,umf) <Von

V21
Hc
\F

-z

2

ﬂ—c*f[—umf 12.)?[—61?

2

e gy -fo — —=0

1
NoT

2

=V Z ()12

cLlect\{o}

Upper-Bound:
A (3 founif) <V [T RP
clecl\{o}

If fi(x) depends only on |x| (radial),

A (;% * ft, unif) <V 3 Na(Ch) [fi(a)P?
a>0

Na(Ct) d:efu{cL ect: ¢t = a}

where,
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AN OPTIMAL UPPER-BOUND: THE RANDOM CASE

We need to upper-bound Ng <Ci), but how?

58



AN OPTIMAL UPPER-BOUND: THE RANDOM CASE

We need to upper-bound Ng <Ci), but how?

— To understand first if our approach is meaningful, use random codes of fixed size!

EqL (A (;% *ﬁ,unif)) <Eq. (\/27 W)

<V ZECL (NH(CJ-) |ﬁ(a)\2) (Jensen’s Inequality)

a>0

(@)
= V2" a7 t)]2
v > ic ()]
a>0
Bernoulli: our dream comes false
Choosing f(x) = pXI (1 — p)"~!X| concentrating over words of Hamming weight pn

with random codes C of dimension k leads to:

np2§(1—\/2**/”7—1)

ToensureE, 1. (A (;% * f, unif)) negligible while

2 (1= V=) >t
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UNIFORM DISTRIBUTION OVER A SPHERE

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over
Spn could be chosen? J

34



UNIFORM DISTRIBUTION OVER A SPHERE

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over
Spn could be chosen? J

— 1s,/(}) be the uniform distribution over S;
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CONCLUSION

’\St

HET e ( (Grewsron)) <[
t

=

— Our dream comes true: t > tgy to ensure a negligible statistical distance

But our bound only holds on average, not for a fixed code C.. ..
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NON-RANDOM CASE

a)
To get our upper-bound we used: E 1. (ﬁ {cJ- ect: |ct|= a}) =

— What happens for a fixed code, as aimed in the reduction?

We use

Linear Programming Bounds from Delsarte’s Theory (Association Schemes, . .. ):
Nq (CL) < F(d,a)

where d minimum distance of C*+
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PROGRAMMING SESSION
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