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HAPPY INDEPENDENCE DAY!
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BUT DON’T FORGET...
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THE OBJECTIVE OF THE DAY

Aim of Any Code-Based Cryptosystem:

Security relies on the hardness of the Decoding Problem (DP)

How to trust DP hardness?

▶ Test of time (designing & studying algorithms solving the decoding problem)

▶ Reduction: prove that decoding is harder than another hard problem

−→ We will focus on reductions
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COURSE OUTLINE

• A Quick Recap: Decoding Random Codes, an Average Case

• Worst-to-Average-Case Reduction: Framework

• Smoothing Parameter

• Fourier Transform in the Hamming Cube
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THE AVERAGE DECODING PROBLEM



LINEAR CODES AND HAMMING WEIGHT

Today: focus on binary codes
(
for the sake of simplicity

)
Linear Codes: Primal Representation

A linear code C is a subspace of Fn2
Basis/Generator matrix representation: rows of A ∈ Fk×n

2 form a basis,

C =
{
sA : s ∈ Fk2

}

The vector/matrix multiplication sA is the collection of inner-products

〈s, a1〉, . . . , 〈s, an〉 where ai column of A and 〈x, y〉 def=
∑n

i=1 xiyi ∈ F2

Hamming Weight:

∀x ∈ Fn2 , |x|
def
=

{
i ∈ [1, n] : xi 6= 0

}
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BERNOULLI RANDOM VARIABLE

▶ e← Ber(p)⊗n : the ei ’s are independent and P(ei = x) =
{

1− p if x = 0
p if x = 1

Chernoff’s Bound: Ber(p)⊗n concentrates over words of Hamming weight≈ np

Given e← Ber(p)⊗n ,

E (|e|) = np and P
(∣∣∣|e| − np

∣∣∣ ≥ εn
)
≤ 2 e−εn2

First approximation: Ber(p)⊗n is a uniform vector of Hamming weight np
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AVERAGE DECODING PROBLEM

Some slight variation of the decoding problem

DP(n, k, t): Average Decoding Problem

• Input: (A, sA + t) where A ∈ Fk×n
2 , s ∈ Fk2 are uniform and t← Ber(t/n)⊗n

• Output: recovering s

Algorithm A solving DP in time T and probability ε means

• A runs in time T,

• Given A, s uniform and t← Ber(p)⊗n ,
PA,s,t (A (A, sA + t) = s) = ε
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YOU SAID AVERAGE CASE?

▶ Given (A, s) ∈ Fk×n
2 × Fk2 uniform and t← Ber(p)⊗n ,

PA,s,t
(
A (A, sA + t) = s

)
= ε

Law of Total Probability:

ε = 1
2k×n

∑
s0,A0

∑
t

∑
t0 : |t0|=t

P (A (A0, s0A + t0) = s0) pt(1− p)n−t︸ ︷︷ ︸
Pt(t=t0)

−→ ε: average success probability of A over all possible inputs

ε small =⇒A fails for almost all instances

Assumption in Code-Based Cryptography:

DP is hard, i.e., for any algorithm, T/ε is large 
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TEST OF TIME, WHAT ELSE?

To Ensure Hardness of DP (Average Hardness):

1. Test of time (designing & studying algorithms solving DP)

2. Reductions: solving the decoding problem on average implies an algorithm which

(i) computes (quantumly) short vectors in the dual code

(ii) solves all instances of another decoding problem (worst-case)

10



TEST OF TIME, WHAT ELSE?

To Ensure Hardness of DP (Average Hardness):

1. Test of time (designing & studying algorithms solving DP)

2. Reductions: solving the decoding problem on average implies an algorithm which

(i) computes (quantumly) short vectors in the dual code

(ii) solves all instances of another decoding problem (worst-case)

10



WORST-TO-AVERAGE CASE REDUCTION



OUR GOAL

Given a fixed instance

(G, xG + r) where Hamming weight of r is w

we want to recover r

But, we only have an algorithm A solving DP with probability ε

PA,s,t
(
A(A, sA + t) = t

)
= ε
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THE APPROACH

Key-idea:

From (G, xG + r) build a “uniform decoding” instance being fed to A

1. ei ← D (distribution)

2. Compute,
〈y, ei〉 = 〈xG, ei〉 + 〈r, ei〉 = 〈 x︸︷︷︸

secret

, eiG⊤〉 + 〈r, ei〉︸ ︷︷ ︸
noise

Packing Instances Together:

• Build the matrix A = (ai) whose columns are the eiG⊤

• Try to decode (A, (〈y, ei〉i)) = (A, xA + t) where t = (〈r, ei〉)i
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THE ISSUE

From the fixed decoding instance G, xG + r, we build

〈y, ei〉 = 〈xG, e〉 + 〈r, e〉 = 〈 x︸︷︷︸
secret

, eiG⊤〉 + 〈r, ei〉︸ ︷︷ ︸
noise

Packing Instances Together:

• Build the matrix A = (ai) whose columns are the eiG⊤

• Try to decode (A, (〈y, ei〉i)) = (A, xA + t) where t = (〈r, ei〉)i

−→ Feed (A, (〈y, ei〉i)) to the average decoding algorithm A. But what happens?

▶ Columns of A, i.e., eiG⊤ , are not uniform

▶ Noise 〈r, ei〉 and eiG⊤ are correlated

▶ How does 〈r, ei〉 behave?

Our Goal:

Estimate success probability of A being fed with the biased instance (A, (〈y, ei〉i))
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CLOSENESS: STATISTICAL DISTANCE

Statistical Distance:

Given two random variables X, Y,

∆(X, Y) = ∆(f, g) =
1
2
∑
a
|P(X = a)− P(Y = a)|

−→ It captures the differences between two random variables

• Data processing inequality: for any function/algorithm h

∆(h(X), h(Y)) ≤ ∆(X, Y)

• For any event E ,
|P(X ∈ E)− P(Y ∈ E)| ≤ ∆(X, Y)

If an algorithm succeeds with inputs X and probability ε, then it succeeds given Y with

probability ε + ∆(X, Y)
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OUR AIM

True average decoding instance

1. We want the following to be small:

α
def
= ∆

(
(eiG⊤

, 〈x, eiG⊤〉 + 〈r, ei〉), ( a︸︷︷︸
uniform

, 〈x, a〉 + e︸︷︷︸
same distrib as ⟨r, ei⟩

)
)

2. We feed
(
eiG⊤, 〈x, eiG⊤〉 + 〈r, ei〉

)
to the decoding-solver A with success probability ε

3. If we give n samples to A, it will recover x with probability ε + nα

Simplification:

Target: ∆

eiG⊤, a︸︷︷︸
uniform

 small when G is fixed but ei random variable.

16



A GEOMETRICAL INTERPRETATION: PRIMAL REPRESENTATION

Aim: ∆

eG⊤, a︸︷︷︸
uniform

 small

Which object is eG⊤?

Take the code C ⊆ Fn2 point of view

C =
{
c : cG⊤ = 0

}

−→ eG⊤ defines a coset of C

Primal Representation:

eG⊤ uniform⇐⇒ uniform in Fn2/C, i.e. uniform modulo C

eG⊤ uniform for e←− D⇐⇒ c + e uniform in Fn2 where c
unif←−C and e←− D

17



POTATOES

c + e uniform in Fn2 where c
unif←−C and e←− D

c ∈ C

after adding noise

Fn2

Starting from codewords and adding noise
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POTATOES

c + e uniform in Fn2 where c
unif←−C and e←− D

c ∈ C

after adding noise

Fn2

Starting from codewords and adding noise

−→ To be uniform: necessary to cover the whole space after adding noise!
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COMBINATORICS POINT OF VIEW: GILBERT-VARSHAMOV RADIUS

c + e uniform in Fn2 where c
unif←−C and e←− D

If e concentrates over words of Hamming weight ≤ t, it is necessary that

t is such that: ♯C ·
(n
t
)
≥ 2n

Gilbert-Varshamov Radius of C:

tGV : smallest radius t0 such that ♯C ·
( n
t0

)
≥ 2n

If one targets c + e uniform with e concentrating over words of Hamming weight t,

then one wants t as small as possible which is tGV

But why?
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THE REDUCTION IN A NUTSHELL

An algorithm solving the average decoding problem with noise

ei = 〈r, ei〉 where ei ←− D

implies an algorithm solving the fixed decoding problem (G, xG + r)

Ideal Situation:

The reduction works with P (〈r, ei〉 = 1) is small

Because in cryptography we use the assumption that average decoding is hard
for a noise e with P(e = 1) small

−→ To ensure P (〈r, ei〉 = 1) is small we need to choose ei concentrating over words

of small Hamming weight
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ABOUT THE NOISE DISTRIBUTION



THE NOISE: OUR BEST FRIEND TO UNIFORMIZE

Our Aim:

To find e←− D such that c + e is close (statistical distance) to uniform when c unif←−C

A First Approach:

Choose each bit of e with probability 1/2, then c + e is uniform

But, doing this is useless: 〈r, e〉 will be a uniform noise. . .

Therefore, impossible to solve (eG⊤, 〈x, eG⊤〉 + 〈r, e〉︸ ︷︷ ︸
noise

)

−→ We need to carefully choose e!
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OUR GOAL

Given a Linear Code C ⊆ Fn2 : we want

c + e to be uniform where c unif←−C and e← D (free choice in the reduction)

St be the Hamming-sphere with radius t

If D concentrates over St ,

♯C ·
(n
t
)
≥ 2n ⇐⇒ t ≥ tGV

A Lower-Bound on the Amount of Noise:

If noise concentrates on sphere with radius t: necessarily t ≥ tGV
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SOME NOTATION

Notation:

• unif: uniform distribution of Fn2

• 1C : indicator function of C

• Convolution, f ⋆ g(x) def
=

∑
y∈Fn2

f(y)g(x− y)

If X← f and Y← g are independent, then X + Y← f ⋆ g

Smoothing Parameter:

If ft concentrates over words of weight t. Smoothing parameter is the smallest t such that,

∆
(
1C
♯C ⋆ ft, unif

)
= 1

2
∑
x∈Fn2

∣∣∣ 1C♯C ⋆ ft(x)− unif(x)
∣∣∣ is negligible

Our Dream:

∆
(
1C
♯C ⋆ ft, unif

)
is negligible as soon as t = tGV(1 + o(1)),
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CAUCHY-SCHWHARZ: PARSEVAL’S WORLD

We want: 1C
♯C ⋆ ft close to uniform

So, x 7→
∣∣∣ 1C♯C ⋆ ft(x)− unif(x)

∣∣∣ will be roughly constant!

Any idea to upper-bound tightly
∑
x∈Fn2

∣∣∣ 1C♯C ⋆ ft(x)− unif(x)
∣∣∣?

A Good Idea: Cauchy-Schwarz

∑
x∈Fn2

∣∣∣∣ 1C♯C ⋆ ft(x)− unif(x)
∣∣∣∣ ≤ √2n

√√√√√∑
x∈Fn2

( 1C
♯C

⋆ ft(x)− unif(x)
)2

−→ The upper-bound: L2-distance!

A natural approach: Parseval’s identity via Fourier Theory
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FOURIER TRANSFORM IN THE HAMMING CUBE



FOURIER TRANSFORM (INFORMAL)

Fourier Transform (informal):

It decomposes a function in the Fourier basis

But how is defined the Fourier basis?

−→ Basis that diagonalizes (per-block in non-abelian case) translation operators!

Hamming Cube Case:

Given the translation operator R(t) for functions f : Fn2 −→ C,

R(t) : f 7−→
(
g : x ∈ Fn2 7−→ g(x + t)

)
It is diagonal in the character basis

(
χy : x 7−→ (−1)⟨x,y⟩

)
,

R(t) (χy) = (−1)⟨y,t⟩ · χy
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FOURIER TRANSFORM IN THE HAMMING CUBE

• Scalar product and associated norms:

〈f, g〉 def=
1
2n

∑
y∈Fn2

f(y)g(y) and ‖f‖2
def
=

√
〈f, f〉

• An orthonormal basis, characters:

χx(y) def
= (−1)⟨x,y⟩

Fourier Transform:

Given f : F2 → C,
f̂(x) = 1√

2n
∑
y∈Fn2

f(y)χx(y) =
√
2n 〈f, χx〉

• Convolution:
f̂ ⋆ g =

√
2n f̂ · ĝ
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PARSEVAL’S IDENTITY

Parseval Identity: Fourier Transform Isometry for L2

‖f− g‖2 = ‖̂f− ĝ‖2

Proof.

Given any function h : Fn2 −→ C, as (χx)x∈Fn2
is an orthonormal basis,

h =
∑
x∈Fn2

〈h, χx〉 · χx and ‖h‖22 =
∑
x∈Fn2

∣∣∣〈h, χx〉∣∣∣2 = 1
2n

∑
x∈Fn2

∣∣∣ĥ(x)∣∣∣2 = ‖ĥ‖22

29



DUALITY

−→ For our purpose: we need to compute 1̂C

Dual Code:

Given C ⊆ Fn2 ,

C⊥ def
=

{
x ∈ Fn2 : ∀y ∈ Fn2 ,

n∑
i=1

xiyi = 0
}

=
{
x ∈ Fn2 : ∀y ∈ C, χx(y) = 1

}

Fourier Transform of the Code Indicator:

1̂C =
♯C
√
2n

1C⊥

−→ This result is known as “Poisson summation” formula!
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FOURIER TRANSFORM UNIFORM FUNCTION

−→ We also need to compute ûnif where unif(x) = 1
2n for any x ∈ Fn2

Fourier Transform of the Uniform Function:

ûnif = 1√
2n
· δ0 where δ0(x) = 0 if x 6= 0 and 1 otherwise

(
Kronecker delta

)

Proof.
√
2n · ûnif(x) =

∑
y∈Fn2

unif(y)χx(y) =
∑
y∈Fn2

(−1)⟨x,y⟩
2n

But, ∑
y∈Fn2

(−1)⟨x,y⟩ = 0 when x 6= 0.

Indeed, when x 6= 0, it exists z 6= 0 such that 〈x, z〉 6= 0 mod 2 and∑
y∈Fn2

(−1)⟨x,y⟩ =
∑
y∈Fn2

(−1)⟨x,(y+z)⟩ = (−1)⟨x,z⟩
∑
y∈Fn2

(−1)⟨x,y⟩

As (−1)⟨x,z⟩ 6= 1, the above equality is only possible if
∑
y∈Fn2

(−1)⟨x,y⟩ = 0.
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SMOOTHING PARAMETER: AN UPPER-BOUND

∆

( 1C
♯C

⋆ ft, unif
)
≤
√
2n

∥∥∥∥ 1C♯C ⋆ ft − unif
∥∥∥∥
2
=
√
2n

∥∥∥∥∥
√
2n

♯C
1̂C · f̂t − ûnif

∥∥∥∥∥
2

=
√
2n

∥∥∥∥∥
√
2n

√
2n · ♯C

· ♯C · 1C⊥ · f̂t −
1
√
2n

δ0

∥∥∥∥∥
2

=
√
2n

√ ∑
c⊥∈C⊥\{0}

|f̂t(x)|2

Upper-Bound:

∆
(
1C
♯C ⋆ ft, unif

)
≤
√
2n

√ ∑
c⊥∈C⊥\{0}

|f̂t(x)|2

If ft(x) depends only on |x| (radial),

∆
(
1C
♯C ⋆ ft, unif

)
≤
√
2n

√∑
a>0

Na(C⊥) |f̂t(a)|2

where,
Na(C⊥)

def
= ♯

{
c⊥ ∈ C⊥ : |c⊥| = a

}
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AN OPTIMAL UPPER-BOUND: THE RANDOM CASE

We need to upper-bound Na
(
C⊥

)
, but how?

−→ To understand first if our approach is meaningful, use random codes of fixed size!

EC⊥

(
∆

( 1C
♯C

⋆ ft, unif
))
≤ EC⊥

√2n √∑
a>0

Na(C⊥) |̂ft(a)|2


≤
√
2n

√∑
a>0

EC⊥

(
Na(C⊥) |f̂t(a)|2

) (
Jensen’s Inequality

)

=
√
2n

√√√√∑
a>0

(n
a
)

♯C
|̂f(t)|2

Bernoulli: our dream comes false

Choosing f(x) = p|x|(1− p)n−|x| concentrating over words of Hamming weight pn
with random codes C of dimension k leads to:

np ≥ n
2

(
1−

√
2k/n − 1

)
To ensure EC⊥

(
∆

(
1C
♯C ⋆ f, unif

))
negligible while

n
2

(
1−

√
2k/n − 1

)
� tGV
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UNIFORM DISTRIBUTION OVER A SPHERE

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over
Spn could be chosen?

 

−→ 1St/
(n
t
)
be the uniform distribution over St
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CONCLUSION

Using f =
1St(n
t
) ,

EC⊥

(
∆

( 2n

♯C
1C ⋆ f, unif

))
≤

√
2n

♯C ·
(n
t
)

−→ Our dream comes true: t ≥ tGV to ensure a negligible statistical distance

But our bound only holds on average, not for a fixed code C . . .
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NON-RANDOM CASE

To get our upper-bound we used: EC⊥

(
♯
{
c⊥ ∈ C⊥ : |c⊥| = a

})
=

(n
a
)

♯C

−→ What happens for a fixed code, as aimed in the reduction?

We use

Linear Programming Bounds from Delsarte’s Theory
(
Association Schemes, . . .

)
:

Na
(
C⊥

)
≤ F(d, a)

where d minimum distance of C⊥
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PROGRAMMING SESSION
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