
LECTURE 5
MCELIECE AND ALEKHNOVICH ENCRYPTION’
SCHEMES
Summer School: Introduction to Quantum-Safe Cryptography

Thomas Debris-Alazard

July 05, 2024

Inria, École Polytechnique

THE OBJECTIVE OF THE DAY

Code-Based Encryption Schemes

• McEliece (’78)

• Alekhnovich (’03)

−→ Focus on the proof that their security reduces to the hardness of decoding random codes

1

COURSE OUTLINE

• McEliece’s Public-Key Encryption Scheme

• How to Rely the Encryption Security on only DP: Alekhnovich’s Approach

• Search-to-Decision Reduction

• Modern Instantiations of Alekhnovich’s Approach

2

MCELIECE’S ENCRYPTION

MCELIECE IN A NUTSHELL

McEliece (1978):

A← Trapdoor(): public-key

message

A

+

e

• With the trapdoor: easy to recover message if e “short” (with few 1, a lot of 0),

• Without: hard

4

BE CAREFUL

What is a trapdoor in McEliece’s approach?

5

MCELIECE’S ENCRYPTION

Key Generation:

• (Gpk, t, T)← Trappdoor() where Gpk represents a code such that,

(mGpk + e, T) easy−−→ m
(
if |e| ≤ t

)
• Secret Key: T

• Public Key:
(
Gpk, t

)

Encryption of m with Public-Key:

Pick random e ∈ {z : |z| = t} and output as ciphertext
mGpk + e

Decryption of mGpk + e:

Use T to compute

(mGpk + e, T) −→ m

6

AN INSTANTIATION OF MCELIECE

Berlekamp-Welsh Algorithm:

Codes that we know how to decode: GRSk(x, z)

• Public Key: a representation of GRSk(x, z)



1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
...

...
xk1 xk2 · · · xkn




z1 0

z2
. . .

0 zn



• Secret Key:

What is the secret key? Can we give the above matrix as a public key?

7

AN INSTANTIATION OF MCELIECE

Berlekamp-Welsh Algorithm:

Codes that we know how to decode: GRSk(x, z)

• Public Key: a representation of GRSk(x, z)

Gpk = S



1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
...

...
xk1 xk2 · · · xkn




z1 0

z2
. . .

0 zn

 where S non-singular picks random basis

• Secret Key: T = (x, z)

Is the security of this scheme well-identified? Does it reduce to well identified problems?

7

AN INSTANTIATION OF MCELIECE

Berlekamp-Welsh Algorithm:

Codes that we know how to decode: GRSk(x, z)

• Public Key: a representation of GRSk(x, z)

Gpk = S



1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
...

...
xk1 xk2 · · · xkn




z1 0

z2
. . .

0 zn

 where S non-singular picks random basis

• Secret Key: T = (x, z)

Is the security of this scheme well-identified? Does it reduce to well identified problems?

Yes!

7

SECURITY REDUCTION

McEliece’s Encryption:

pk: Gpk representation of a code and sk: a trapdoor T

The security of McEliece relies on 2 assumptions:

1. The hardness of DP,

2. We can’t distinguish Gpk and Gu
(
uniform

)
.

But how to prove this statement?

8

SECURITY REDUCTION: FORMAL STATEMENT

Computational Distance:

Given two random variables X0 , X1 and T,

∆C(X0, X1)(T)
def
= max

A: |A|≤T

{
PX0 (A(x0) = 0)− PX1 (A(x1) = 1)

}
where |A| denotes the running-time of the algorithm A.

Security Reduction of McEliece’s Encryption:

Given Gpk be distributed as a public-key in McEliece’s encryption and Gu being uniform with the

same size,

max
|A|≤T

{
P
(
A

(
Gpk,mGpk + e

)
= m

)}
≤ ∆C

(
Gpk, Gu

)
(T) + max

|A|≤T

{
P (A (Gu,mGu + e) = e)

}
︸ ︷︷ ︸

solving decoding problem

Gpk is computationally indistinguishable from Gu , is equivalent to

∆C
(
Gpk, Gu

)
(T) is small

9

PROOF

Proof.

Let A be an algorithm breaking McEliece.
1. We Claim:

P
(
A

(
Gpk,mGpk + e

)
= m

)
≤ ∆C

(
Gpk, Gu

)
+ P (A (Gu,mGu + e) = m)

Let us design B an algorithm to distinguish Gpk and Gpk with the help ofA

• Given G?

(i) We pick a uniform m and e with Hamming weight t

(ii) We feed (G?,mG? + e) to A
(iii) If the answer is m, we decide that Gpk were given, otherwise Gu

We have,
P
(
B
(
Gpk

)
= “pk′′

)
= P

(
A

(
Gpk,mGpk + e

)
= m

)
P
(
B (Gu) = “pk′′

)
= P (A (Gu,mGu + e) = m)

But at the same time,∣∣∣P (
B
(
Gpk

)
= “pk′′

)
− P

(
B (Gu) = “pk′′

) ∣∣∣ ≤ ∆C
(
Gpk, Gu

)
(T)

2. It concludes the proof as

P
(
B (Gu) = “pk′′

)
= P (A (Gu,mGu + e) = m) ≤ max

|A|≤T

{
P (A (Gu,mGu + e) = e)

}

10

PROOF

Proof.

Let A be an algorithm breaking McEliece.
1. We Claim:

P
(
A

(
Gpk,mGpk + e

)
= m

)
≤ ∆C

(
Gpk, Gu

)
+ P (A (Gu,mGu + e) = m)

Let us design B an algorithm to distinguish Gpk and Gpk with the help ofA

• Given G?

(i) We pick a uniform m and e with Hamming weight t

(ii) We feed (G?,mG? + e) to A
(iii) If the answer is m, we decide that Gpk were given, otherwise Gu

We have,
P
(
B
(
Gpk

)
= “pk′′

)
= P

(
A

(
Gpk,mGpk + e

)
= m

)
P
(
B (Gu) = “pk′′

)
= P (A (Gu,mGu + e) = m)

But at the same time,∣∣∣P (
B
(
Gpk

)
= “pk′′

)
− P

(
B (Gu) = “pk′′

) ∣∣∣ ≤ ∆C
(
Gpk, Gu

)
(T)

2. It concludes the proof as

P
(
B (Gu) = “pk′′

)
= P (A (Gu,mGu + e) = m) ≤ max

|A|≤T

{
P (A (Gu,mGu + e) = e)

}

10

PROOF

Proof.

Let A be an algorithm breaking McEliece.
1. We Claim:

P
(
A

(
Gpk,mGpk + e

)
= m

)
≤ ∆C

(
Gpk, Gu

)
+ P (A (Gu,mGu + e) = m)

Let us design B an algorithm to distinguish Gpk and Gpk with the help ofA

• Given G?

(i) We pick a uniform m and e with Hamming weight t

(ii) We feed (G?,mG? + e) to A
(iii) If the answer is m, we decide that Gpk were given, otherwise Gu

We have,
P
(
B
(
Gpk

)
= “pk′′

)
= P

(
A

(
Gpk,mGpk + e

)
= m

)
P
(
B (Gu) = “pk′′

)
= P (A (Gu,mGu + e) = m)

But at the same time,∣∣∣P (
B
(
Gpk

)
= “pk′′

)
− P

(
B (Gu) = “pk′′

) ∣∣∣ ≤ ∆C
(
Gpk, Gu

)
(T)

2. It concludes the proof as

P
(
B (Gu) = “pk′′

)
= P (A (Gu,mGu + e) = m) ≤ max

|A|≤T

{
P (A (Gu,mGu + e) = e)

}
10

PLENTY OF INSTANTIATION, AND ATTACKS...

Can we distinguish the public code from a random one?
Be extremely careful. . .

We believe in the hardness of DP,

but, when instantiating McEliece with codes equipped with a decoding algorithm:

these codes have to be indistinguishable from random codes

−→ Many family of codes were historically proposed to instantiate McEliece’s encryption

Many were broken. . .

▶ Generalized Reed-Solomon codes (see Exercise Session)

▶ Convolutional codes

▶ Polar codes

▶ LDPC codes

▶ etc. . .

11

ORIGINAL MCELIECE’S INSTANTIATION: GOPPA CODES (I)

Alternant Codes:

Let k, n,m such that n ≤ qm , x ∈ Fnqm where the xi ’s are distinct.

We define the alternant code A(x, y) as,

A(x, y) def
= GRSk(x, y) ∩ Fnq

−→ Alternant codes belong to the class of algebraic codes!

Decoding Alternant Codes:

Given c + e where c ∈ A(x, y), we can decode using Berlekamp-Welsh algorithm

by considering them as vector of Fqm

−→ Goppa codes are a particular case of alternant codes!

12

ORIGINAL MCELIECE’S INSTANTIATION: GOPPA CODES (I)

Goppa Codes:

Given some polynomial G ∈ Fqm [X], its associated Goppa codes is defined as

Γ(G, x) def
= A(x, y) where ∀i ∈ [1, n], yi =

G(xi)∏
i ̸=j(xi−xj)

−→ Goppa Codes enjoy many interesting properties!

▶ We can decode them at twice the Berlekamp-Welsh decoding distance

▶ They behave as random codes for their weight distribution and minimum distance

Goppa Codes in Cryptography:

Since their introduction by McEliece for cryptography in ’78, we did not succeed to design an

efficient algorithm to distinguish between Goppa and random codes(
except when Goppa codes have rate very close to 1

)

13

MCELIECE WITH PARITY-CHECK MATRICES (I)

McEliece historically described his scheme with generator matrices

Does it work with parity-check matrices?

−→ Yes! It is often referred to as Niederreiter’s approach

14

MCELIECE WITH PARITY-CHECK MATRICES (I)

McEliece historically described his scheme with generator matrices

Does it work with parity-check matrices?

−→ Yes! It is often referred to as Niederreiter’s approach

14

MCELIECE WITH PARITY-CHECK MATRICES (II)

Key Generation:

• (Hpk, t, T)← Trappdoor() where Hpk represents a code such that,

(Hpke⊤, T) easy−−→ e
(
if |e| ≤ t

)
• Secret Key: T

• Public Key:
(
Hpk, t

)

Encryption of m with Public-Key:

We first encode m as e(m) ∈ {z : |z| = t} via a public encoding and then output as ciphertext
Hpke(m)⊤

Decryption of Hpke⊤:

Use T to compute

(Hpke(m)⊤, T) −→ e(m) −→ m

15

A BAD (BUT ORIGINAL) PRESENTATION OF MCELIECE

https://en.wikipedia.org/wiki/McEliece_cryptosystem

There are no permutations in McEliece
cryptosystem

16

https://en.wikipedia.org/wiki/McEliece_cryptosystem

A BAD (BUT ORIGINAL) PRESENTATION OF MCELIECE

https://en.wikipedia.org/wiki/McEliece_cryptosystem

There are no permutations in McEliece
cryptosystem

16

https://en.wikipedia.org/wiki/McEliece_cryptosystem

COMPARISON OF BOTH APPROACHES

About the Security:
▶ Both representations of the scheme have the same security

• The decoding problem with parity-check of generator matrices is the same problem

• If you can distinguish between Gpk and Gu , then you can distinguish between Hpk and Hu
because you can compute a generator from a parity-check matrix and reciprocally

About the Public-Key Size:
▶ Public-keys in generator or parity-check matrix can generically be represented with the same

amount of bits. We can put them in “systematic form”

Gpk = (Ik | A) where A ∈ Fk×(n−k)
q and Hpk = (In−k | B) where A ∈ F(n−k)×k

q

−→ It requires k× (n− k)× log2 q bits!

Ciphertext Length
▶ With generator matrices, a ciphertext has length n× log2 q while with parity-check matrices it

has length (n− k)× log2 q

17

ABOUT KEY-SIZES

In McEliece scheme, keys are large: k× (n− k)× log2 q bits

How to reduce key-sizes?

−→ use a quasi-cyclic structure!

Quasi-Cyclic Codes:

1. First we identify h ∈ Fn2 ∼=
∑n

i=1 hiX
i−1 ∈ F[X]/(Xn + 1)

2. A Quasi-Cyclic code with ℓ-blocks is a code admitting as basis(
g1 g2 . . . gℓ
⟳ ⟳ . . . ⟳

)
where we often identify vectors gi ∈ Fn2 as polynomials in F2[X]/(Xn + 1)

−→ Only one vector is necessary to represent a quasi-cyclic code!

Issue:

When using these codes in McEliece, we don’t reduce the security to the hardness of the decoding

problem of a random code, but the hardness of decoding a random quasi cyclic code and less is

known about this problem. . .

18

CONCLUSION ABOUT MCELIECE APPROACH

▶ Two equivalent representations of McEliece’s encryption: using parity-check or generator
matrices

−→ Ciphers are shorter with the parity-check representation

▶ Security relies on decoding a random code and distinguishing the public code from a random

code
−→ Be cautious when choosing a code that you know how to decode: the basis that you give

as public-key as be random looking

▶ Public-keys are huge instead you add some algebraic structure like quasi-cyclic

−→ But it decreases the security by not relying on the hardness of decoding a random code

Two McEliece encryptions on the verge for standardization by American government (NIST)

• Classic McEliece: it uses Goppa codes as originally proposed by McEliece

• Bike: its uses quasi-cyclic MDPC codes

19

ALEKHNOVICH’S ENCRYPTION

MOTIVATION

McEliece security is not only relying on the hardness of decoding a random code

Do we know code-based encryptions whose security only relies on the hardness of a decoding a

random code?

21

FIRST ALEKHNOVICH’S ENCRYPTION

Key Generation
(
a · b =

∑
i aibi

)
:

1. Choose A ∈ {0, 1}k×n at random and e ∈ {0, 1}n with few one

2. Compute the space Cpk = Span (C, e)⊥

3. Secret Key: e ; Public Key: Cpk

To encrypt a bit b ∈ {0, 1} with the public key:

• If b = 0, choose c ∈ Cpk and e′ ∈ {0, 1}n with few one. Send: c + e′

• If b = 1, choose u ∈ {0, 1}n uniformly. Send: u

To decrypt a received word y ∈ {0, 1}n:

Compute

y · e =


(c + e′) · e = c · e︸︷︷︸

=0 as c ⊥ e

+ e′ · e = 0 with prob. ≈ 1 as e, e′ have few one

u · e = a random bit

−→ To be successful: the encryption of a bits needs to be repeated a few number of times
22

WHAT ABOUT THE SECURITY?

If you want to decrypt without the secret-key

−→ Distinguish between between u uniform and c + e where |e| is small

Solving this problem does not amount to solve the average decoding problem. . .

23

SEARCH-TO-DECISION REDUCTIONS

AVERAGE DECISIONAL DECODING PROBLEM

DDP(n, q, R, τ), k def
= ⌊Rn⌋ and t def= ⌊τn⌋.

▶ Distributions:

• D0 : (G, u) be uniformly distributed over Fk×n
q × Fnq .

• D1 : (G,mG + e) where G, m, e being uniformly distributed over Fk×n
q , Fkq and words of

Hamming weight t

• Input: (H, s) distributed according to Db where b ∈ {0, 1} is uniform,
• Decision: b′ ∈ {0, 1}.

Is this problem strictly easier than its search version?

→ No! They are equivalent (Goldreich-Levin hardcore predicate)

25

DECISION IS NOT HARDER THAN SEARCH

How to define the “efficiency” of an algorithm solving the average decision decoding problem

(DDP)?

Advantage:

The DDP(n, R, τ)-advantage of an algorithm A is defined as:

AdvDDP(n,R,τ)(A)
def
= 1

2 (P (A(H, s) = 1 | b = 1)− P (A(H, s) = 1 | b = 0))

where the probabilities are computed over the internal randomness of A, a uniform b ∈ {0, 1}

and inputs be distributed according to Db which is defined in DDP(n, R, τ)

−→ Any algorithm solving DDP can be turned into an algorithm solving DP?

Theorem:

Let A be a probabilistic algorithm running in time T(n) whose DDP(n, R, τ)-advantage is given

by ε(n) and let ℓ(n) def
= log(1/ε(n)). Then it exists an algorithmA′ that solves DDP(n, R, τ) in time

O(n2ℓ(n)3)T(n) and with probability Ω(ε(n)2)

26

GOLDREICH-LEVIN HARDCORE PREDICATE

But how to prove this statement?

−→ It basically relies on the following statement

Goldreich-Levin Hardcore Predicate

Let f : {0, 1}∗ → {0, 1}∗ ,A be a probabilistic algorithm running in time T(n) and ε(n) ∈ (0, 1) be

such that
P (A(f(x), r) = x · r) = 1

2 + ε

where the probability is computed over the internal coins of A, x and r that are uniformly

distributed over {0, 1}n . Let ℓ(n) def
= log(1/ε(n)). Then, it exists an algorithm A′ running in time

O
(
n2ℓ(n)3T(n)

)
that satisfies

P
(
A′(f(x) = x)

)
= Ω

(
ε2
)

where the probability is computed over the internal coins of A′ and x.

How to Prove this Statement?

The answer is not so hard! Crucial remark:

A(f(x), r) = x · r + e where P(e = 1) = 1/2− ε(n)

Therefore, recovering x with the help of A amount to decode

xn
(
r⊤(1) | . . . |r

⊤
(N)

)
+ (e1, . . . , eN) where P(ei = 1) = 1/2− ε < 1/2

(
not uniform noise

)
27

SECURITY REDUCTION IN ALEKHNOVICH

On Board

28

MODERN INSTANTIATIONS OF ALEKHNOVICH

▶ Though Alekhnovich’s cryptosystem is proved to be secure under the hardness of the average

decoding problem, it is not efficient

−→ n (few thousand) bits to encrypt one bit. . .

▶ It exists a second Alekhnovich’s cryptosystem also proved to be secure under the hardness of

the average decoding problem but efficient
−→ O(n) bits to encrypt n bits!

29

CONCLUSION

Many other topics:

• Code-based primitives like signatures,

• Change the Hamming metric (for instance rank metric)

• Code-based cryptography and algebra (for instance polynomial rings via function fields)

• . . .

Thank You!

30

CONCLUSION

Many other topics:

• Code-based primitives like signatures,

• Change the Hamming metric (for instance rank metric)

• Code-based cryptography and algebra (for instance polynomial rings via function fields)

• . . .

Thank You!

30

	McEliece's Encryption
	Alekhnovich's Encryption
	Search-to-Decision Reductions

