Elliptic curve cryptography

Chloe Martindale

These lecture notes are for the short course on isogeny-based cryptography
given at the SLMath summer school at IBM Research Ziirich in June 2024.

1 Introduction to elliptic curves

Definition 1. Let K be a field with characteristic different from 2 or 3 (for
K =T, this means that p # 2 or 3). An elliptic curve E defined over a field
K is a curve of the form

E:y? =2 +ax+b,

with a,b € K and 4a> + 27b% # 0.

Examples. Here is an example with ¢ = —2 and b = 2, i.e., the curve y? =
3 — 2z 4 2:
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Here is an example with @ = —2 and b = 1, i.e., the curve y? = 2> — 2z + 1:
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To see why we have excluded a and b such that 4a® + 27b% = 0, consider the
following non-examples of elliptic curves:

e o =b=0, the curve y? = 23:
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e a=—3,b=2, the curve y? = 23 — 32 + 2:
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So we include the condition 4a3+27b% = 0 to avoid curves with ‘sharp’ points
or curves that cross themselves. A fundamental reason that elliptic curves are so
widely studied (not just in cryptography, but this is essential for cryptography
too) is that it is possible to define a group law on the set of K-rational points
of an elliptic curve defined over K. The ‘set of K-rational points’ here refers to
the solutions (x,y) € K x K to the defining equation, together with one more
point that we will discuss below. Let us first think about the case of K = Q.

Define

G={(z,y) €QxQ:y*=2>+ax +b}

for some a,b € Q. We can ‘almost’ make a group from G. The group law on
Weierstrass curves has a nice geometric definition.

e We define the inverse of a point (z,y) to be (z, —y).



e We define every vertical line to have an invisible point P, ‘the point at
infinity’, and this is the neutral element of the group.

e We define a straight line that is tangent to the curve to intersect the curve
twice at that point.

e With the above conventions, every straight line passing through at least
2 points on the curve intersects the curve in exactly 3 points. We define
the sum of 3 points on a straight line to be P, hence addition looks like
this:

P+Q

We made quite a few choices in defining our group law +, so we need to
check the group axioms to make sure that it is really a group law for GU { P }.
Recall the group axioms:



Definition 2. We say that G is a group under * if

(G1) For every a,be G, axbe G.

(G2) For every a,b,c € G, (a*b) xc=ax (bxc).

(G3) There exists e € G such that for every a € G, exa =a*e = a.
(G4) For every a € G, there exists b € G such that axb=bxa =e.

Now we can check these axioms to ensure that G U {Ps} is a group under
the operation + that we defined above:

(G1) To check (G1), we need to make sure that given P and Q in G U {Px},
P+ Qe GU{Px}. If P or Q = Py this is trivial, so assume otherwise.
P + @ is on the curve by definition, so we only need to check that the
coordinates are rational. The coordinates of P + ) are rational if and
only if the coordinates of —(P + @) are rational, which was the third
point of intersection between the line through P and ) and the elliptic
curve. Suppose that the the equation of the line through P and @ is given
by y = mxz +c. Then as P and @ have rational coordinates, m and c € Q.
To get the third point of intersection of y = ma + ¢ with y? = 23 4+ azx + b,
we just plug y into E to get a cubic in x with rational coefficients, 2 roots
of which (zp and z¢) are known to be rational, hence the third is also
rational. So the z-coordinate of —(P + Q) is rational, hence also the y
coordinate as y = mx + c.

(G2) To check (G2), we need to check that given P, @, and R € G U {Py},
P+ (Q+ R) = (P+ Q)+ R. Checking this by writing out the formulae
is easy but long, so we skip it.

(G3) Axiom (G3) states that there exists a neutral element, which is Py, by
definition.

(G4) Axiom (G4) states that every element has an inverse, which we saw already
was given by reflecting about the x-axis.

Remark 1. Another way to think of P, is the following. When we study
elliptic curves and their associated groups, the y? = 23 + ax + b (with a and b
in K) comes from setting = X/Z and y = Y/Z in the equation

Y27 = X3 +aXZ%+ 025

Note that every term in this equation has degree 3, so that if (Xo, Yo, Zo) is a
solution of this equation, then (nXg,nYy,nZy) is also a solution of the equation
for every n in K. For this reason, if (nXg,nYy,nZy) = (Xo, Yo, Zo) then we say
that the 2 solutions are equivalent. Observe that these solutions all correspond
to a unique x and y! The point at infinity is

P, =1(0,1,0)

in (X,Y, Z)-coordinates, which gets ‘sent to infinity’ when we switch to (x,y)-
coordinates. Note that this is always on the curve!



Having intuitively constructed a geometric group law elliptic curves over Q,
if we now write down the formulae for adding points, we can get a group law
for elliptic curves over ;. So what are the formulae for adding?

Write P = (zp,yp) and Q = (zg,yq), and define (zg,yr) = R = P+ Q.
We want to write down a formula for zz and for yg. We know that P, @), and
—R all lie on the straight line passing through P and @, so we first calculate
the formula of this line. The equation of this line is y = mx + ¢ where

_— { (yo —ypr)/(xq —zp) P#Q
(3zp +a)/(2yp) P=Q

and
C=Yp —MITp.

(Recall that the gradient of a tangent line to a curve at a point P is the value
of % at P.) We plug in y = mx + ¢ with m and ¢ as above to the equation for
E and solve to find the intersection points:

(mz +¢)? = 2° + azx + b.
We know that the roots of this cubic are zp, xg, and xR, so
23— (mx+e) +ar+b= (v —xp)(r—120)(T — TR).
Then by comparing coefficients of 22, we see that
2

TR=M —ITp—TQ-

Then we can just use the equation of the line to compute yg:
Yr = —Y-r = —(MmaR +c).

With these explicit formulae, we can define, for any a,b € F, such that 4a® +
27b% # 0, a group law on

G={(z,y) €EFyxF,:y* =2 +az+ b} U{Px}

as
(zp,yp) + (2q,yQ) = (m* —xp — 2q, —m(m? — xp — 2q) — ¢),
where
" { (o —yp)/(xq —zp) P #Q
(323 +a)/(2yp) P=Q
and

C=Yp —Mrp.

All the case distinctions with P, can be avoided with some clever tricks for
efficiency, which we will see below.



1.1 Efficient arithmetic with elliptic curves

Of vital importance in real-world applications of cryptographic primitives such
as CSIDH or SQISign is maximising efficiency without sacrificing security. The
rich mathematical structure of elliptic curves lends itself to many ideas beyond
double-and-add, some of which we study below.

1.2 Edwards curves

One form of elliptic curve that turns out to be beneficial for efficient arithmetic
is an Edwards curve. Although the Edwards and twisted Edwards curves we
will see here have an z2y? term which does not appear in the Weierstrass model;
more on that later.

Example. Let’s try to make a group from the points on an Edwards curve. We
will look first at the example

C:az?+y? =1— 30222
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Note that the equation of C looks similar to the equation of a circle with a
‘fudge factor’, and we will see that we can construct a group law similar to that
of the circle plus this ‘fudge factor’. Define

G={(z,y) ERxR:2%+5y*=1-302%y*}.

Claim 1. For (x1,91), (x2,y2) € G define

T1Y2 + Y122 Y1Y2 — T1X2 )

(331791) S (J"27y2) = (1 _ 30x1y1x2y2’ 1+ 30x1y1$292

Then (G, ®) is a group with neutral element (0, 1).



Proof. We first have to check that we didn’t divide by zero, that is, we should
check that for (z1,41), (x2,y2) € G, we never get that 1 £+ 30z x2y1y2 = 0. If
Z1,%2,Y1, or yo = 0 then this is clearly non-zero, so suppose that x1, x2,y;, and
12 are non-zero. Then by the curve equation, for ¢ = 1, 2,
77+ y; 3057y = 1,
and z7 +y? > 0 so
30z2y? < 1,
hence
AY 30|$1y1| < 1.
Therefore
30|m1x2y1yg| = \/30|l‘1y1|v30|$2y2| <l-1=1,
so the denominators of the operation & are never zero. We still need to check

that it actually defines a group law, that is, that the group axioms (G1)-(G4)-
recalled in the ‘Elliptic curves - mathematical foundations’ notes—are satisfied.

(G1) For the axiom (G1), we have to check that (x1,y1) ® (22,y2) € G, that is,
we have to check that

2 2
( T1Y2 + Y122 ) i ( Y1Y2 — T1X2 )
1 —3021y122Y2 1+ 30z1y122y2

2 2
—1_30 ( T1Y2 + Y122 > ( Y1y2 — T1T2 )
1 — 30x1y172Y2 1+ 30z1y122Y2

which we can do just by simplification.

(G2) For the axiom (G2), we have to check that if (21, y1), (%2, y2), and (x3,y3) €
G, then

((xlvyl) D (3527y2)) D (l’g,y:;) = (xlayl) S2) ((x27y2) 2] (x37y3))7

which we can again doing just by plugging in the formulae and simplifying.

(G3) For the axiom (G3), we have to check that for every (z,y) € G, (z,y) @

(0,1) = (0,1) ® (2,y) = (x,y). We plug (z1,y1) = (z,y) and (22,12) =
(0,1) into our formula for @ to get

z-14+0-y y-1—z-0
0,1) = -
(@.y)®(0.1) <1—30m~y-0-1’1+30x-y-0~1) @),

and similarly for (0,1) & (z,y).

(G4) For the axiom (G4), we have to check that for every (z,y) € G, there
exists —(x,y) € G such that (x,y) + (—(z,y)) = (0,1). We claim that

~(z,) = ()

2 .2
_ Yy — Y o +y
(@) & (—2,y) = <1 — 302292’ 1+30x2y2)

= (0,1),
as by the curve equation 22 4 y? = 1 + 302%y2.
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Definition 3. Suppose that d € IF; is a non-square (i.e., that for g a primitive
element of Fy, d = g* for k odd). Then the curve

Cy:x? +y? =1+ da’y?
is an Edwards curve over Fy.

Note that the example we looked at was C'_3o but over R. In fact

T1y2 +1T2 Y1y — T1%2 )

Iy, b (x ) = ’
(z1,91) @ (22,92) (1+dm1ylx2y2 1 —dz1y172y2

defines a group law of Cjy just as before. Checking the group axioms is ex-
actly the same process, but as the proof that the denominators are non-zero is
different, we will write that out.

Claim 2. Suppose that P, = (z1,y1) and P, = (22,y2) are on Cy, i.e. that for
i=1,2
22 +y? =1+ daty?.
Then
1 £ dziz2y1y2 # 0.

Proof. Suppose for a contradiction that
dxlmgylyg = +1. (1)
Then

datyi (w2 + y2)* = daiy; (25 + y5 + 2x2y2)
= datyi (1 + dx3ys + 2x0ys)
= d*xTylazys + dajyi + 2(derzayrye) T

=1+ daeiy? + 2219,
= (xl iy1)27

but as d is non-square, dz?y?(zs + y2)? is non-square or zero, and (ry & y1)? is
square, so we must have that

dziyi(za +y2)° = (21 £41)? = 0.

By the assumption drizsy1y2 = £1 that x1,y1, 2, and ys are non-zero, and by
definition that d = 0, hence

T2 +y2 = 0.
But if (x2,y2) is on Cy, then (x5, —ys) is also on Cy, hence the above argument
with yo = —yo gives that

x2 —y2 =0,

hence x5 = yo = 0, which is a contradiction to (1). O



So we have a group under @ made up of the F -points on Cy, but how easy
is arithmetic in this group? Note first of all that doubling a point is actually
easier than adding 2 different points:

2'(%‘,11]) = (m,y)@(x,y)
_ 2xy y? — 2
B <1+dx2y2’ 1—dx2y2>
_ 2xy y? — 2
B <I2+yz’2—x2—y2)'

These equations have lower degree than the equations for adding two differ-
ent points, which means faster computation (we will see later how much faster).
Still, we have to do an inversion to compute the sum of 2 points or the double
of a point, but we can ‘delay’ this inversion. So, our aim now is to compute

(73,y3) = (21,91) © (T2, ¥2)

with the minimum number of inversions and multiplications. To ‘delay’ the
inversion, we introduce new variables X;,Y;, Z; and substitute z; = X;/Z; and
yi = Y;/Z;. Then

(X1Ys + XoY1)Z1Z5

T3 T (20 25)2 + dX1 X2 Y1 Vs
and
_ Z1Zy(N1Y, — X1 X,
v (Z123)? —dX 1 X2 Y1Ys'
Define
X3 = Z125(X1Ya + XoY1)((Z122)? — dX1 X271 Y5),
Ys = Z122(Y1Ye — X1X2)((Z122)* + dX1X2Y1Y5),
and

Zs = ((Z12:)% — dX1 XoY1Y2)((Z1Z5)? + dX 1 X2 Y1Y5).

Then z3 = X3/Z3 and y3 = Y3/Z3, and if we just compute X3, Y3, and Z3 then
we don’t have to do any inversions! In fact, X3, Y3, and Z3 can be computed
in just 10 multiplications (M), one squaring (S), and one multiplication by (D)
in the following way:

1. A= 7,75, B= A%, C = X1 X5, D =Y Y,. (3M + 18).
2. E=dCD,F=B—-FE,G=B+E. (IM + 1D).

3. X3 =AF((X1 4+ Y1)(X2+Y2) — C — D). (3M).

4. Y3 = AG(D — C). (2M).

5. Z3 = FG. (IM).
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Note that in step 3 we reduced the multiplications by a clever trick:

X1Yo+ XV = X1 Yo+ Xo Y1+ X1 Xo+ V1Yo — X1 Xo—Y1 Y2 = (X14Y7)(Xo+Y2)—C—D.

Doubling can be done in just 4S + 3M, so here we concretely that it is much
faster than adding distinct points.

You can also make scalar multiplication faster by precomputing some mul-
tiplications of P, e.g., by using that

15P =8P +4P+ 2P+ P.

1.3 Montgomery curves
Definition 4. A Montgomery curve is a curve of the form
My g : Bl =u+ A’ +u

for B(A%? — 4) # 0. The group law looks very similar to the group law for
Weierstrass curves:

(u1,v1) @ (ug,v2) = (Bm2 — A —wu; —ug,m(ur — us) —v1),
where u3 = Bm? — A — u1 — us, and

m— { (v1 = v2)/(u1 — u2) (w1, v1) # (u2,v2)
(3u? + 2Au; +1)/(2Bv1)  (u1,v1) = (uz2,v2).

The neutral element is again P.

We have now mentioned a few times a ‘transformation’ that relates different
curve shapes. We would like a way to say when 2 curves are ‘the same’, or at
least a way to say what ‘the same’ means! Let’s think about what this would
mean in an ideal world..

Suppose that we have some map from the Edwards curve

Cy:a? 4y =1+dzy?
to the Montgomery curve M4 g above given by
f : Cd — MA,B~

It would be nice if for all points P on Cy and for all a € Z, we had that
f(aP) = af(P), as f(P) = Q and af(P) = a@) are points on a Montgomery
curve, so then we can find a (if we can break DLP on a Montgomery curve).
That is, if f satisfies this nice property of f(aP) = af(P), we can somehow
translate the discrete logarithm on Cy to a discrete logarithm on M4 p. It
would also be nice to be able to go the other direction, that is if there’s a map

93MA,B—>Cd

that is the inverse of f. Some other nice properties to require of f:

11



o f[(P+Q)=[f(P)+ f(Q)
e f((0,1)) = Px (remember that the neutral point on Cy was (0, 1).

We can write down a nice map from a twisted Edwards curve to a Mont-
gomery curve:

ar? +y* =1+ dz?y? — Bv? =ud + Au® +u
(x,y) — (u,0) = ((1+y)/(1—y), (1 + y)/(x( y)))
(a,d) —  (4,B)=(2(a+d)/(a—d),B=4/(a—d).

In other direction we have the map:

B =uw+Au+u — ax? +y? =1+ dz?y
(u,v) — (z,y) = (u/v, (u— 1)/(U+1))
(A, B) —  (a,d)=((A+2)/B,(A-2)/B).

This map is an ‘isomorphism’:

Definition 5. Let E/k and E’/k be elliptic curves. An isomorphism f: E —
E' is a birational map that induces an isomorphism of groups E(k) = E’'(k). In
this case we say that E and E’ are isomorphic.

By a similar transformation we can go from Montgomery to Weierstrass,
but not necessarily back! All elliptic curves are Weierstrass, but not all can
be written in Edwards/Montgomery form. There is a quick way to see this:
Edwards curves (and hence Montgomery curves) always have a point (1,0) of
order 4, and there are examples of Weierstrass curves that do not. To see that
(1,0) is a point of order 4, recall the doubling formula for Edwards curves from

last time:
2xy y? — 2?2
2 (z,y) = <x2+y272—$2—y2 .

Then we can easily compute
2-(1,0) = (0,-1)

and hence
4-(1,0)=2-(0,—-1) =(0,1).

(Recall that (0,1) is the neutral element.)

Given an elliptic curve over k, the set of elliptic curves that are isomorphic
to it is called its isomorphism class. Each isomorphism class of elliptic curves
has an invariant called the j-invariant, which is just a number in k. For curves
in Weierstrass form

E:y?=a234ax+b,

12



the j-invariant can be easily computed via the formula
4a®
(E) =1728————.
iE) 403 + 2702
Some final observations on elliptic curves:

e Computations on Edwards curves are faster than on curves in Weierstrass
form, so you should use Edwards curves for implementations when possi-
ble.

e Montgomery curves are typically used for isogeny-based cryptography,
where we have efficient formulae for isogenies and efficient storage (see
later).

e More formulae for addition/doubling on elliptic curves in various shapes
are available at hyperelliptic.org/EFD.

2 Isogenies

Now that we have learnt about elliptic curve, and about how some elliptic curves
are related via isomorphism, a natural question to ask is: are there other maps
between elliptic curves? Isogenies are a natural generalization of isomorphisms.

Definition 6. Let E/k and E’/k be elliptic curves. An isogeny is a rational

map E — FE’ that induces a surjective group homomorphism E(k) — E’(k).
We now see some examples:

1. Let Es1/F9 : y? = 2® + 5122 + 2 be a Montgomery elliptic curve. Then
the multiplication-by-two map

[2] : Esp — FEs5q
P — P+P

is an isogeny.
Exercise: show that [2] can be represented by the rational map

(@,y) — 12*—182°-1632° —18x+1 (2541825 450" —52% 182 —1)
Y 8z (x2+9z+1) ’ (8x(x2492+1))2 '

2. Let E5; be as above and let Eg/Fy19 : 4% + 2% + 922 + 2. Then the map

f+ Esi — Ey

23183224+ 732+30 y(z®—652>—1042+174)

is an isogeny. This isogeny has degree 3 and its kernel is given by

ker(f) = {0, (~118,51), (—118, —51)}.

13



This kernel is a subgroup of Fs;(F419) and is cyclic and generated by
(—118,51), a point of order 3. There are other points of order 3 on Ej;
defined over an extension field, for example @ = (210,v/380) € Er_ ,.
If we ‘push’ @ through f, we get a point f(Q) € Eo, which still has
order 3. This point has a special purpose: there exists another isogeny
g : Eg — E5; whose kernel is generated by f(Q), and the composition
go f = [3], the multiplication-by-3 map on FEs;. This is not a coincidence:
we can always construct such a map, it is called the dual map (formally
defined below).

You will notice that in the second example (and the first), the description
of the kernel is much simpler than the expression in terms of rational maps. In
fact it can be even simpler if you give only the generators of the kernel. The
wonderful thing is: this is enough - an isogeny is uniquely determined by its
kernel (we will state this formally later) - and we even have Vélu’s formulae to
recover the rational maps from the kernel.

Vélu observed in his seminar paper in 1973 that, if

f: E = E
(z,y) = (X.Y)

is an isogeny, and we denote by (zp,yp) the affine coordinates of a point P on
FE, then
Xppy=zp+ Y, (2peq —20)
Qeker(f)—{0O}

and

Yipy=yr+ Y, (yr+q —v0Q)-
Qeker(f)—{0}

He also gives an explicit derivation of the equations when E is in Weierstrass
form, as well as the equation of the codomain E’; the paper is (short and) avail-
able in English for free at https://aghitza.org/publications/translation-velu.
pdf.

Many of the points that came up in the examples can be captured in the
following formal definitions and theorems:

Definition 7. Let E, E'/F,- be elliptic curves and let £ € Z~ such that p and
¢ are coprime. An f-isogeny f: E — E’ is an isogeny with #ker(f) = ¢.

Definition 8. Let E/F,- be an elliptic curve and let ¢ € Z~( such that p and
¢ are coprime. Let f: E — E’ be an f-isogeny. Then there exists a unique (up
to isomorphism) isogeny fV : B’ — E such that f¥ o f = [¢]. This is called the
dual isogeny. (See the example above for how to compute such an isogeny!)

Theorem. (Isogenies are uniquely defined by their kernels). There is a one-
to-one correspondence from finite subgroups of an elliptic curve to separable
isogenies from said curves, up to post-composition with isomorphisms.

14



Theorem. Let E/k be an elliptic curve, and let £ be a prime coprime to the
characteristic of k. Then, over k, there are £ + 1 non-isomorphic £-isogenies
from E.

This theorem follows from the fact that isogenies are uniquely defined by
their kernels (up to isomorphism), and that the £-torsion subgroup of E

El]={P e Ek): [(|P = O} 2 Z/IZ x L)/

Definition 9. Let S be a set of primes and let k be a finite field. The super-
singular S-isogeny graph over k as as

e Vertices: isomorphism classes of supersingular elliptic curves. (Can be k
or k-isomorphism, depending on the setup.)

e Edges: for any £ € S, an edge F — E’ represents an f-isogeny £ — E’ and
its dual.

3 Introduction to quaternion algebras

In the slides, we gave a high-level overview of SQISign, but before we can say
how the verification arrow is computed in zero-knowledge we need to cover a
couple of facts about endomorphism rings of supersingular elliptic curves: Now
we will consider all the endomorphisms over the algebraic closure, not just those
over the base field.

Theorem. Let E/F, be a supersingular elliptic curve. Then there exists a
supersingular elliptic curve E'[F,2 that is Fy-isomorphism to E.

This theorem means that the vertices of the supersingular isogeny graph for
F,-, for any r > 2, can all be represented by j-invariants in F,.. Even better,
this graph is actually connected for S = ¢, for any prime ¢ # p, so contains
every supersingular j-invariant over IF,:

Theorem. Let ¢ # p be prime. Then the supersingular £-isogeny graph over
Fp2 is connected.

This graph is even ¢ + 1-regular, by the theorem above that says that over
the algebraic closure there are always £+ 1 isogenies of degree ¢ from any given
elliptic curve. We do run into trouble when a vertex has automorphisms of
degree £, but this happens at only one or two vertices in the whole graph.

Now let’s relate all this to quaternion algebras:

Theorem. Let E/k be an elliptic curve. Then End(E) is one of:
o 7,
e an order in a quadratic number Ting, or

e a mazximal order in a quaternion algebra.

15



In fact, it turns out that an elliptic curve is supersingular if and only if
its endomorphism ring is a maximal order in a quaternion algebra (a concept
we will define below), so this is an alternative characterisation of supersingular
curves: and fundamental to SQISign.

Definition 10. A quaternion algebra B is a rank 4 Q-algebra

B=Q+iQ+ jQ+ kQ
such that there exist o, 8 € Z¢ for which i? = —q, j% = =8, k = ij = —ji.

Note that in particular B is not commutative. We have natural concepts of
conjugation, norm, and trace which are similar to the complex numbers:

Definition 11. Let x = a 4+ ib + jc + kd € B. The conjugate of x is
T=a—1b— jc— kd,

the reduced norm of x is

nrd(z) = 2T
and the reduced trace of x is
trd(z) = 2 + 7.
If you are familiar with number fields, then the following concept will also
seem familiar:

Definition 12. Let B be a quaternion algebra. An order of B is a rank 4
Z-lattice that is a subring of B.

One consequence of an element x lying in an order is that nrd(z) € Z. A
simple example of an order is the following:

O=27+iZ+ jZ + kZ.

Definition 13. Let B be a quaternion algebra. A mazimal order in B is an
order that is not contained in any other order.

Unlike in number rings, maximal orders in quaternion algebras are not
unique! Two maximal orders O and O’ are isomorphic when there exists « € B
such that O’ = aOa~1, but even up to isomorphism there can be many maximal
orders in a given B.

We will see shortly that maximal quaternion orders are going to correspond
to supersingular elliptic curves via their endomorphism rings. But what do the
isogenies correspond to?

Definition 14. Let O be a maximal order in a quaternion algebra B. A left-
ideal (resp. right-ideal) of O is an additive subgroup of O satisfying

OorciI

(resp. 1O CI).
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Definition 15. Let I be a left- or right-ideal in B. Then the left-order (resp.
right-order) of I is given by

O¢l):={z€B:zl CI}
(resp. O.(I):={zx € B:Ix CI}).
Definition 16. Let I be a left- or right-ideal in B. The norm of I is
N(I) = ged{nrd(x) : x € T}.

Deuring proved that there is almost an equivalence of categories between
supersingular elliptic curves over Fp2 (and their isogenies) and maximal orders
in the quaternion algebra By o, in which i? = —1 and j? = —p (and left-ideals
connecting these orders).

We just need one more definition. Let E/F,: be a supersingular elliptic
curve. Then 7 : (z,y) — (2P, yP) is the Frobenius isogeny from E. When E is
defined over F,, we have seen this already as the Frobenius enodmorphism, but
when F is defined over F,> (but not IF,,) it defines an isogeny. The codomain of
7 is called the Frobenius conjugate of E and is denoted by E®).

Now, Deuring showed that there is a 1-1 correspondence between pairs
(E, E®) of Frobenius-conjugate supersingular elliptic curves and maximal or-
ders in B, o via the map E — End(E). Furthermore, under this correspon-
dence, f-isogenies map to left-ideals of norm ¢, where kernels are associated with
ideals as we saw in the context of CSIDH.

This means that we can translate any problem on a supersingular isogeny
graph to a ‘quaternion order graph’, where the vertices are maximal orders in
a quaternion algebra and the edges are left-ideals.

Our isogeny-based cryptosystems have all been based on the hardness of
‘the isogeny problem’, which can be stated as: given uniformly random super-
singular elliptic curves F and E’ /Isz, compute an isogeny between them. In
the quaternion graph, this problem becomes: given uniformly random maximal
orders O and O’ in B, o, compute a left-ideal I of O such that O’ = O,(I). It
turns out that this problem can be solved in polynomial-time using the KLPT
algorithm due to Kohel, Lauter, Petit, and Tignol: and is how the verification
arrow in SQISign is computed. Alice starts from an Ey with known endomor-
phism ring, and computes the endomorphism rings of all the elliptic curves in
the diagram via the Deuring correspondence and the knowledge of the isogenies.
She can then run the KLPT algorithm to find an ideal connecting End(Epk) and
End(Eye ), and translate it back to an isogeny via the Deuring correspondence.

It remains to mention that for all this to lead to a secure system it is funda-
mental that the attacker cannot also compute these endomorphism rings, and
in fact Wesolowski has proved that the supersingular isogeny problem is poly-
nomially equivalent to the hard problem of computing the endomorphism ring
of a uniformly random supersingular elliptic curve.
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