SLMath summer school on post-quantum
cryptography

Exercise sheet on isogeny-based cryptography

Questions 1-5 are designed to give you familiarity with elliptic curves and
isogenies.

Questions 6-9 are designed to give you familiarity with computing with
class-group actions and CSIDH.

Questions 10-12 are designed to give you familiarity with quaternion al-
gebras as endomorphism rings of supersingular elliptic curves.

Questions 13-14 are designed to give you familiarity with applying Kani’s
lemma to problems in isogeny-based cryptography.

. In answering this question, you should use SageMath as a calculator, but

if you are new to elliptic curves we suggest to write your own code for
the group law and Vélu’s formulae in order to gain familiarity with the
concepts. Both of these are implemented directly in SageMath: once you
have written your own code you can check the correctness by comparing
with the output of the inbuilt commands. Define

E/Q:y* =2 +1
and observe that (—1,0), (0,1) € E(Q).
(a) Compute (—1,0) 4 (0, 1) using the group law.

(b) Compute 2 - (0,1) using the group law.

(c) Compute the minimum positive integer n such that n(0,1) = 0. We
call (0,1) a point of order n.

(d) Using Vélu’s formula, compute an isogeny from E with kernel gener-
ated by (0,1).

(e) If E is defined as an elliptic curve /Q in SageMath, the command

E.torsion_points()



returns all the Q-rational points on E with finite order. By making
use of this command and the

.order ()

command, deduce how many distinct Q-rational 3-isogenies there are
from FE.

2. Define
E/]F17Zy2 :.7,‘3+1

and
E'[Fi7 :y* = 23 — 10;

let f: E — E’ be the map you computed in question 1(d) reduced modulo
17.

(a) Calculate the points in the preimage of (3,0) under f.
(b) Compute j(E) and j(E').
(¢) Show that E and E’ are isomorphic over Fy72.
(d) Show that E and E’ are not isomorphic over Fy7. For this you may
make use of the following theorem:
Theorem 1. Let E: y*> = a® +ax+b and E' : y* = 2° +a/z + b’ be
elliptic curves over F,. Every isomorphism E — E' defined over I,
1s of the form

p(z,y) = (WP +r,u’y),
where u,r € F,. The isomorphism is defined over F, if and only id
u,r € Fg.

3. Let £ be a prime. Show that there are £+1 size-¢ subgroups of Z/{Z xZ /Z.

(a) Recall that this implies that there are £+1 non-isomorphic ¢-isogenies
from any given elliptic curve E/k. Are these isogenies defined over k?

(b) Bonus: what happens for ¢"7

4. (a) Using the in-built SageMath commands for isogeny computation,
compute the connected component of the 2-isogeny graph of ellip-
tic curves defined over Fyggggo3 containing a vertex corresponding to
J(E) = -3.

(b) Using the in-built SageMath commands for isogeny computation,
compute the connected component of the 2-isogeny graph of ellip-

tic curves defined over Fig92 containing a vertex corresponding to
J(E) = 43.

5. Recall the Diffie-Hellman key exchange: Let G = (g) be a cyclic group in
which the Discrete Logarithm Problem is hard, and suppose that g and G
are public values such that the g is of (public) prime order Z.



e Alice samples a secret key sk, from {1,...,¢} and computes and
publishes pk, = g%

e Bob samples a secret key sk, from {1,...,¢} and computes and pub-
lishes pk, = ¢°.

e Alice and Bob can then both compute their shared secret value
gab — pkzk” — pkikh.

Recall also the definition of a group action. Suppose that G is a group
with group operation * and S is a set. We say that G acts on S if there
exists a map

f:GxS—=S

such that

e For every g,h € G and s € S, we have that f(gxh,s) = f(g(f(h,s)).
e For every s € S, if id is the identity of G then f(id, s) = s.

Suppose that you are given a group action of a commutative group G on a
set S which is efficiently computable and hard to invert, and for which S
has no known efficiently computable group structure. Construct a Diffie-
Hellman-style key exchange algorithm in which the public keys and shared
secret are elements of S, and the secret keys are elements of G.

6. 1 Let £ be an odd prime and p a prime satisfying ¢|(p + 1). Let
EofF,:y? =23 + Az? + 2

be supersingular and let 7 : (z,y) — (2P, y?) be the p-power Frobenius
endomorphism on E. Let I = ([{], 7 — [1]) be an ideal of End(E4).

(a) Prove that Hy := Ngerker(a) C Ea(F,)[¢].
(b) Fix £ =3, p = 419, and A = 220.
(i) Verify that F 4 is supersingular.
(ii) Compute H; for these parameters.
(ii) Compute f; for these parameters.
(iv) Let I’ = ([3]w + [5]) - I. Compute f;- for these parameters.
(¢) Prove that (2,/—p—1) is not an invertible fractional ideal of Z[\/—p].
(This implies that ([2],m — [1]) does not represent an element of the

class group, which is why we can only use odd primes in the CSIDH
class group action).

7. 2 Let p =419 and let Ey/F, : y* = 23 + 22022 + .

1Based on an exercise written by Tanja Lange.
2Based on an exercise written by Tanja Lange.



10.

11.

12.

13.

(a) Find a point P of order 105 on Ey. Compute R = 35P (using in-built
Sage commands) and check that the order of R is 3.

(b) Compute the isogeny @3 of kernel (R). What is the order of ¢3(P)?
Why is this the order?

(¢c) Compute the isogeny @5 of kernel (73(P)) and the isogeny @7 of
kernel (p5 o @3(P)).
(d) What is the codomain of the isogeny of kernel (P)?

Let p =839 = 23.3-5-7 — 1. Write a toy implementation of a CSURF
key exchange in SageMath.

Read about Schnorr’s Identification Protocol in section 21.3.1 of Cryptog-
raphy Made Simple by Nigel Smart (available for free at https://mog.
dog/files/SP2019/Cryptography’%20Made’20Simple.pdf). Suppose that,
for a given set of CSIDH parameters p and ¢, you know that the class group
of Z[\/=p] is cyclic and you know a generator g. How would you adapt the
basic ID protocol as presented in Cryptography Made Simple to depend
on the hardness of inverting the CSIDH group action rather than on the
Discrete Logarithm Problem in (Z/qZ)*?

Let p = 2 (mod 3) and E/F, : y*> = 2® + 1. Prove that End(E) is not
commutative.

3 Consider the quaternion algebra B = (%) Prove that the order
Z[1,1i, 4, k] is not maximal.

4 Choose a quaternion algebra B, and compute a maximal order O.
Choose a small prime ¢ # p. Use Sage to compute a representative of
every left ideal class® of norm ¢ of @ and then compute the right orders
for these ideals. (Note: if p is very small you might only have one ideal
class).

Optional: restrict to (still not too big) p = 2 (mod 3) or p = 3 (mod 4).
Choose a small ¢ that divides p + 1. Compute the full ¢-ideal quaternion
maximal order graph (up to isomorphism) and map onto the equivalent
l-isogeny graph.

Suppose that you are given supersingular elliptic curves
EoJF,: > =2+

and F4/F 2 such that there exists a secret isogeny f : Ey — E4 of given
degree a. Let B be an integer coprime to a and let (Py, Qo) = FEy[B].
Suppose also that you are given mf(FPp) and mf(Qp) for some unknown
m € Z/BZ. Using the ‘lollipop’ technique and Kani’s lemma, describe an

3Based on an exercise written by Laia Amords.
4Based on an exercise written by Laia Amords.

5

i.e. your left-ideals should not be principal multiples of each other.



algorithm to recover f. Does this attack extend to other starting elliptic
curves Fy?

14. Let p = 191 = 26-3 — 1 and let Eg/F, : y*> = 23 + 2. Let ¢ : (z,y) —
(—z,iy), 7 : (z,y) — (P, yP), and o = rom+27+2c+4 be endomorphisms
of EO.

(a) Compute a basis {Py, Qo } of E[2°].
(b) Compute a(Py) and a(Qo).

(¢) How would you compute the image of a random point in Fy under
an isogeny of degree 39, via Kani’s lemma?
Optional: if you know something about dimension 2 abelian surfaces,
and want to try computing this, you’ll need the following. You need
to compute a chain of (2,2)-isogenies, where
— The first is from a product of elliptic curves to a Jacobian (glue-
ing)
— The middle (2,2)-isogenies are between Jacobians (Richelot),
— The last is from a Jacobian to a product of elliptic curves (split-
ting).

Jack’s note, shared on the Slack, gives simple formulae for glueing and
splitting, which you can and should use. For Jacobian to Jacobian,
Ben Smith’s thesis is a good reference.



