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Recall: Diffie-Hellman key exchange 76

Public parameters:
> a prime p (experts: uses I, today also elliptic curves)

» a number g (mod p) (nonexperts: think of an integer less than p)

Alice Eve Bob
sk &2 {0...p—1} skp <=2 {0...p—1}
= :égik/‘><pk3>: g
SS 1= (gSkB)SkA SS 1= (gSkA)SkB

» Alice and Bob agree on a shared secret key ss, then they

can use that to encrypt their messages.
» Eve sees pk, = ¢, pk, = ¢°%; can’t find sk, sk, ss.
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Graph walking Diffie-Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No known efficient algorithms to recover paths
from endpoints.

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Stand back!

.%

We’re going to do maths.
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Maths background #1/3: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.
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Maths background #1/3: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny E — E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ¢: E — E’ has a unique dual isogeny @: E' — E
characterized by o p = ¢ 0 § = [deg ¢].
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Maths background #2/3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
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Maths background #2/3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

Vélu '71:
Formulas for computing E/G and evaluating ¢¢ at a point.

Complexity: O(#G) ~» only suitable for small degrees.

Vélu operates in the field where the points in G live.

~+» need to make sure extensions stay small for desired #G
~+ this is why we use supersingular curves!

!(up to isomorphism of E’)
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Math slide #3/3: Supersingular isogeny graphs

Let p be a prime, g a power of p, and ¢ a positive integer ¢ pZ.

An elliptic curve E/F, is supersingular if p | (9 + 1 — #E(Fy)).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)%
~ easy way to control the group structure by choosing p!
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Math slide #3/3: Supersingular isogeny graphs

Let p be a prime, g a power of p, and ¢ a positive integer ¢ pZ.

An elliptic curve E/F; is supersingular if p | (9 +1 — #E(F;)).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)%
~ easy way to control the group structure by choosing p!

Let S Z p denote a set of prime numbers.
The supersingular S-isogeny graph over [, consists of:

» vertices given by isomorphism classes of supersingular
elliptic curves,

» edges given by equivalence classes® of /-isogenies (£ € S),
both defined over F,.

'"Two isogenies ¢: E — E' and ¢: E — E” are identified if 1) = ¢ o ¢ for

some isomorphism ¢: E' — E".
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Graphs of elliptic curves
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Nodes: Supersingular curves Ex: y* = x° + Ax* + x over Fao.

Edges: 3-, 5-, and 7-isogenies
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Graphs of elliptic curves
A 3-isogeny
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CRS or CSIDH

Traditionally, Diffie-Hellman works in a group G via the map

ZxG — G
(x,8) — g~

Shor’s algorithm quantumly computes x from g* in any group
in polynomial time.

~ Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:
HxS—S.
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Quantumifying Exponentiation
» We want to replace the exponentiation map

ZxG —= G
(x,8) — &

by a group action on a set.
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» The action of a well-chosen [ € cl(Z[,/—p]) on S moves the
elliptic curves one step around one of the cycles.

c(Z]\/=p]) xS — S
([5, E) — I5*E.

12/37



Quantumifying Exponentiation
» We want to replace the exponentiation map

ZxG — G
(x.g) = &
by a group action on a set.
» Replace G by the set S of supersingular elliptic curves
Ex: yZ = x3 + Ax% + x over Fy19.
» For every E4 € S, the ring of F-rational endomorphisms
Endp,(E4) is isomorphic to Z[/=p].
» Replace Z by the commutative group cl(Z./—p]).
» Anideal in cl(Endp,(E4)) is the kernel of an isogeny
from E 4.
» The action of a well-chosen [ € cl(Z[,/—p]) on S moves the
elliptic curves one step around one of the cycles.

c(Z]\/=p]) xS — S
([7,E) — [y xE.
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Diffie and Hellman go to the CSIDH
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Choosing parameters

In [CLMPR18], parameters are chosen as follows:
> /1,...,0,_1 the first n — 1 odd primes.
» {;, > l,_1 the smallest prime such thatp =4/, --- ¢, — 11is
prime.
Then:
» [1,..., [, correspond to kernels of [F,-rational isogenies (see
next slide) — fast.

» Allowing up to 5 actions of each [1(—1) covers® the whole

class group — security then depends on size of class group.
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In [CLMPR18], parameters are chosen as follows:
> /1,...,0,_1 the first n — 1 odd primes.
» {;, > l,_1 the smallest prime such thatp =4/, --- ¢, — 11is
prime.
Then:
» [1,..., [, correspond to kernels of [F,-rational isogenies (see
next slide) — fast.

» Allowing up to 5 actions of each [1(—1) covers® the whole

class group — security then depends on size of class group.

*Any I € cl(Z[,/=p]) can be written as [] I’ withe¢; € [-5,...,5].
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Compute neighbours in the graph

To compute a neighbour of E, we have to compute an /-isogeny
from E. To do this:

» Find a point P of order £ on E.

» Compute the isogeny with kernel {P, 2P, ..., (P} using
Vélu’s formulas* (implemented in Sage).
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order /.
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Compute neighbours in the graph

To compute a neighbour of E, we have to compute an /-isogeny
from E. To do this:
» Find a point P of order / on E.
» Let E/F, be supersingular and p > 5. Then E(FF,) = Cp4; or
C2 X C(p+1)/2.
» Suppose we have found P = E(FF;,) of order p + 1 or
(r+1)/2.
» For every odd prime /|(p + 1), the point #P is a point of
order /.
» Compute the isogeny with kernel {P, 2P, ..., (P} using
Vélu's formulas* (implemented in Sage).
» Given a IF,-rational point of order /, the isogeny
computations can be done over F,.
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Representing nodes of the graph

» Every node of Gy, is

Eag: y2:x3+Ax2+x.
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Representing nodes of the graph

» Every node of Gy, is

Eag: y2:x3+Ax2+x.

= Can compress every node to a single value A € .

= Tiny keys!

16 /37



Does any A work?

IThis algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
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Does any A work?

No.

» About ,/p of all A € F, are valid keys.

» Public-key validation: Check that E4 has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on E,4 and check [p + 1]P = co.!

IThis algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
17 /37



Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).
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Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

>

Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

Childs-Jao-Soukharev [C]S] applied Kuperberg/Regev to
CRS - their attack also applies to CSIDH.

Part of CJS attack computes many paths in superposition.
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Quantum Security
Original proposal in 2018 paper: [, ~ 512 bits.
» The exact cost of the Kuperberg/Regev /C]JS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).
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Quantum Security
Original proposal in 2018 paper: [, ~ 512 bits.
» The exact cost of the Kuperberg/Regev /C]JS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).
» [BLMP19] computes one query (i.e. CSIDH-512 group

action) using 765325228976 = 0.7 - 240 nonlinear bit
operations.

» Peikert’s sieve technique [P19] on fastest variant of
Kuperberg requires 2'¢ queries using 2*° bits of quantum
accessible classical memory.

» For fastest variant of Kuperberg, total cost of CSIDH-512
attack is at least 2°° qubit operations.

» Overheads from error correction, high quantum memory
etc., not yet understood.
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Better parameters - SQALE

[CCJR22] propose the SQALE of CSIDH.
» Useshugep =44--- 4, — 1
» Uses only [1.il
» Tiny fraction of class group used
» Not a subgroup ~+ Kuperberg has to use huge group
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Better parameters - CSURF

Q: What about 2-isogenies?
» The 2-isogeny graph looks like this:

» This is called an isogeny volcano.
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Better parameters - CSURF

Q: What about 2-isogenies?
» The 2-isogeny graph looks like this:

» This is called an isogeny volcano.
» Edges on the cycle are horizontal.
» Away / back to the cycle is descending / ascending.

~+ How to compute ‘on the surface’?
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Better parameters - CSURF

[CD19] solve these problems:
» Setp =4fl1--- ¢, — 1 where (] = 2.
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Better parameters - CSURF

[CD19] solve these problems:
» Setp =4fl1--- ¢, — 1 where (] = 2.
» Set Eo/Fp : y* = x> — x. Then Ej is ‘on the surface’.

» For any curve on the surface, the 2-isogeny with kernel
((0,0)) is horizontal.
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Venturing further beyond the CSIDH

A selection of more advances since original publication (2018):

» sqrtVelu [BDLS20]: square-root speed-up on computation
of large-degree isogenies.

» Radical isogenies [CDV20]: significant speed-up on
isogenies of small-ish degree.
» Some work on different curve forms (e.g. Edwards).

» Knowledge of End(Ey) and End(E,) breaks CSIDH in
classical polynomial time [Wes21].

» CTIDH [B*C?LMS?]: Efficient constant-time CSIDH-style
construction.
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What about signatures? (s 06, DG ‘18, BKV ‘19, DFEKLMPW ‘23)

Identification protocol:
» Alice generates (Ska, pk,), publishes pk,.
» Alice proves to Bob that she knows sk.
» Bob verifies Alice’s proof.
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What about signatures? (s 06, DG ‘18, BKV ‘19, DFEKLMPW ‘23)

Identification protocol:
» Alice generates (Ska, pk,), publishes pk,.
» Alice proves to Bob that she knows skj.
» Bob verifies Alice’s proof.
Typically:
1. Prover: generates ephemeral (esk, epk), publishes epk.
2. Verifier: sends Prover a challenge c.
3. Prover: ¢, esk, sk ~» proof-of-knowledge P.
4. Verifier: P, pk, epk ~~ valid (or not!)
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Identification scheme from H xS — S

Prover Public Verifier
EeS LeH

Si &z

sk =T L%,

pk— sk« E—2 .~ pk
LHEZ

esk = [ 1",

epk, = eskx E,

e
cd f0,1

c

epkz =esk- sk~ pk,epk, ,epk,

<— /
 ) check:

epk; = epk, * ([sk°] = E).

After k challenges c, an imposter succeeds with prob 27,
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From SeaSign to SCALLOP

» [S06] proposed for CRS
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From SeaSign to SCALLOP

» [S06] proposed for CRS
» [DG18] proposed SeaSign for CSIDH

» Downfall: class group structure needed for classical
efficiency

» [BKV19] proposed CSI-FiSh: computed class group for
smallest parameters

» [DFKLMPW?23] proposed SCALLOP: constructs class
group with large parameters (c.f. SQALE)
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SQISlgI’I (De Feo-Kohel-Leroux-Petit-Wesolowski “20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E’ € S, find a € H such that
axE=EFE.
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Given elliptic curves E and E’ € S, find an isogeny E — E’

SQISign is a signature scheme based on this idea:

E——~E

|

pk

epk

E

public, secret, ephemeral secret, public challenge, public proof
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Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E’ € S, find an isogeny E — E’

SQISign is a signature scheme based on this idea:

E—— Eqpk

]

Epx —E

ver

public, secret, ephemeral secret, public challenge, public proof
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Evolution of key exchange

EA—a*EO
OL%K/\ . *(\)
| 5*5,4
\ ‘ (X*EB
ﬂ*( ~
/ EB—/B*EO %K\

Colour code: Public, Alice’s secret, Bob’s secret
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Evolution of key exchange

L : EAB
Eg Ea, Ep Al
\ : : EBA
A U /
) ThmpEy o)

Colour code: Public, Alice’s secret, Bob’s secret
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Evolution of key exchange

Eg

Epx=a(E
= W 4 Oé( O\
wer & T
Al
ke, 1
x\@ ! /

‘ Ega
Ep = B(Eo)

Colour code: Public, Alice’s secret, Bob’s secret
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Evolution of key exchange

CRS or CSIDH

Colour code: Public, Alice’s secret, Bob’s secret
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Evolution of key exchange

From CRS to SIDH

GQAW EA = a(Eo
_? R - (Q/(g))
wer @~ v : \
P4, Qa, Exp
Eo, 2||
Pp,Qp 4, o | /
(B(A“

®<, U
E‘/\bQ/) EB (EO Ker =

Colour code: Public, Alice’s secret, Bob’s secret, ?!
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Evolution of key exchange

From CRS to SIDH
Q,ﬁ EA - a<E0 ker <

-0 o Lo )

Pa, Qa wer & — Eag
é , Ea, a(P3), a(Qs), l
0, Eg, B(Pa), B(Qa) E

PB',‘ QB lfer/@ ! ‘ BA

_(BAD)

"te0,) Ep=B(E)) T :

Colour code: Public, Alice’s secret, Bob’s secret
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Evolution of key exchange
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w00 Ea=a(Eg
=P»
=
ex &
PA, QA/ EAB
Ey, i
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Evolution of key exchange

SIDH

Q:\ﬁ EA - (,Y(EO ker§
wer & !
PA/ QA/

. Ea, o(Ps), a(Qs), E21|4|B
. 0, Eg, B(Pa), B(Qa) E
B, OB kep g o B
S g <2, ~ : /
_(BAD)
*00) Ep=B(Ey) ke :

Colour code: Public, Alice’s secret, Bob’s secret
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Summary of hard problems

» CRS / CSIDH - Finding « given E and o * E.
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Summary of hard problems

v

CRS / CSIDH - Finding o given E and « * E.

All isogeny-based schemes — Given elliptic curves £y and
E s, compute an isogeny o :Eg—E 4 if it exists.

v

v

All isogeny-based schemes — Given a random
supersingular elliptic curve E, compute End(E).

» SIDH -

There are public elliptic curves Ej and £, and a secret isogeny
a : Ep—E4. Given the points Pp, Qp on Eq and «(Pg), a(Qg),
compute . (modulo technical restrictions)*

*Details for the elliptic curve lovers:
p alarge prime; Eo/F,» and E4 /F,» supersingular; deg(c), B public large smooth coprime

integers; points Pg, Qp chosen such that (Pg, Q) = Eo[B].

29/37



Summary of hard problems

v

CRS / CSIDH - Finding o given E and « * E.

All isogeny-based schemes — Given elliptic curves £y and
E s, compute an isogeny o :Eg—E 4 if it exists.

v

v

All isogeny-based schemes — Given a random
supersingular elliptic curve E, compute End(E).

» SIDH -

There are public elliptic curves Ej and £, and a secret isogeny
@3 3 Eo—)E/\. Given O/(EO[B]),
compute . (modulo technical restrictions)*

*Details for the elliptic curve lovers:
p alarge prime; Eo/F,» and E4 /F,» supersingular; deg(c), B public large smooth coprime

integers; points Pg, Qp chosen such that (Pg, Q) = Eo[B].
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History of the SIDH problem

2011 Problem introduced by De Feo, Jao, and Plut
2016 Galbraith, Petit, Shani, Ti give active attack
2017 Petit gives passive attack on some parameter sets

2020 de Quehen, Kutas, Leonardi, M., Panny, Petit, Stange give
passive attack on more parameter sets

2022 Castryck-Decru and Maino-M. give passive attack on SIKE
parameter sets; Robert extends to all parameter sets

CD and MM attack is subexponential in most cases
CD attack polynomial-time when End(Ej) known
Robert attack polynomial-time in all cases

Panny and Pope implement MM attack; Wesolowski
independently discovers direct recovery method

v

vYvyy
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Petit’s trick: torsion points to isogenies

Finding the secret isogeny « of known degree, given «(Ey[B]).
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Petit’s trick: torsion points to isogenies

Finding the secret isogeny « of known degree, given «(Ey[B]).

/‘\ / —\ /\9_0401/08 (+[1)

» Restriction # 1: Assume we can choose ¢ : Eg — Ej.
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Petit’s trick: torsion points to isogenies

Finding the secret isogeny « of known degree, given «(Ey[B]).

/‘\ / —\ /\0—0601/06‘\ (+[1)

» Restriction # 1: Assume we can choose ¢ : Eg — Ej.

» Know «(E[B]) (and @/(E4[B]) from public torsion points.
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Petit’s trick: torsion points to isogenies

Finding the secret isogeny « of known degree, given «(Ey[B]).

\/\/

0 =aoroa (+[n)

» Restriction # 1: Assume we can choose ¢ : Eg — Ej.

» Know «(E[B]) (and @/(E4[B]) from public torsion points.
» Know deg(#) = deg(a)? deg(t) + n?.
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Petit’s trick: torsion points to isogenies

Finding the secret isogeny « of known degree, given «(Ey[B]).

/‘\ / —\ /\0—0601/06‘\ (+[1)

Restriction # 1: Assume we can choose ¢ : Ey — Ej.

Know deg(#) = deg(a)? deg(t) + n?.

Restriction # 2: If there exist ¢, 7 such that deg(¢) = B, then
can completely determine 6, and «, in polynomial-time.

>
» Know «(E[B]) (and @/(E4[B]) from public torsion points.
>
4
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Petit’s trick: torsion points to isogenies

Finding the secret isogeny « of known degree, given «(Ey[B]).

" T £ 0 acied

Restriction # 1: Assume we can choose ¢ : Ey — Ej.

Know «(Ey[B]) (and a(E4[B]) from public torsion points.
Know deg(0) = deg(a)? deg(:) + n?.

Restriction # 2: If there exist ¢, 7 such that deg(¢) = B, then
can completely determine 6, and «, in polynomial-time.

vV v.vvYy

» Restriction # 2 rules out SIKE parameters, where
B~ deg(a) (and p =~ B - deg o).
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Enter Kani

There are public elliptic curves Ej and £, and a secret isogeny
a : Ep—E4. Given the points Pg, Qp on Eg and «(Pg), o(Qp),
compute . (modulo technical restrictions)*
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Enter Kani

There are public elliptic curves Ej and £, and a secret isogeny
a : Ep—E4. Given the points Pp, Qp on Eg and «(Pg), a(Qg),
compute . (modulo technical restrictions)*

Problem:
Not enough choices 6 : E4 — Ea.
‘No 6 of degree N./

Solution? 0 : Eg x E4 — Eg X Ea?
~+ still not enough. But! Kani’s lemma:

» Constructs Eq, E, such that there exists a
(structure-preserving) isogeny

Ei xE4q — Eyx Ey

of the right degree, N2.
» DPetit’s trick then applies.
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Recovering the secret

Finding the secret isogeny o of known degree.

\\JEO\/
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Recovering the secret
Finding the secret isogeny « of known degree.

Eo =
? - 0
® - |
| ,f” 1
I e > E

Kani’s lemmaconstructs the above such that

@:(W *f‘ >:E1><EA—>EO><E2

*

is a structure preserving isogeny of degree N?, and

ker(®) = {(deg(«)P,f(P)) : P € E1[N|}

~+ can compute ¢ and read off secret o!
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Recovering the secret with Robert’s trick
Finding the secret isogeny « of known degree.

Eo* _»Ea
) - Iy
@ T |
| -7 |
[ - E4

constructs the above such that

¥ —at 4 4 4 4
@Z . :EOXEA*)EOXEA

%
is a structure preserving isogeny of degree N2, and
ker(®) is known

~+ can compute ¢ and read off secret «!
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Power unleashed

Consequence 1: Factoring isogenies.

Ey Q 3 Ea
¢ f |
\ /,/’/ l
T EEEEEEEEEEE - E

Kani’s lemma states that

@—(‘P ;a>:E1xEA—>EO><E2

*

is a structure preserving isogeny of degree B?, and

ker(®) = {(deg(a)P,f(P)) : P € Ey[B}.
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Power unleashed

Consequence 1: Factoring isogenies.

Ep o = Ep
t T
© o f- !
\ T l
e > Ey

Kani’s lemma states that

c1>—<99 _*a>:E1><EA—>E0><E2

is a structure preserving isogeny of degree B?, and

ker(®) = {(deg(c)P,f(P)) : P € Eq[B]}.
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Power unleashed

Consequence 2: Let

» «o: Eg — E5 be an isogeny.

» B asmooth integer, (Pg, Qp) = Eo[B].
Then:

» « can be stored efficiently as a(Pg), a(Qp).

» images under « can be efficiently computed from this
representation.
Doesn’t require deg(«) to be smooth!
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

Eog — Padas — Epqp — Pagp —> Ex < M " >~- Ex
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

Eog — Padas — Epqp — Pagp —> Ex < M " >~- Ex

Py, Qo Pa,Qan Pa,Qa 1Pa, p2Qa
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

Ean ( M )

Pa,1,Qan

» skq < Ea1,Pa1,0Qa41, ( i )
2

’
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

Ex

1P, p2Qa

» sky <= Ea1,Pa,1,0a,1, ( 1 12 ),pkA < Ea, paPa, p2Qa
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Bob: Encrypt B € Maty»[Z/2%7)

» Ska <= Ea1,Pa1,0Qa4,1, ( 1 2 ),pkA < Ea, p1Pa, p12Qa
» B € Mat, o,
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Eg Ea
[ !
SOBzdl ()OB732[7
v v
E] EZ
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Bob: Encrypt B € Maty»[Z/2%7)

Eg Ea
| |
SOBzdl ()OB732[7
v A\
Eq E;
| |
Bx Bx
v ¥
Eq E;
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Bob: Encrypt B € Maty»[Z/2%7)

Qo ]:TO E‘A 52152
¥B,d; ¥B,3%
v v
o b E o
Bx Bx
51,3 }51 EZ Py p
1,8 Q2.8

» sky < Ex1,Px 1,041, < m 12 >,pkA < EA“LMPA“LIQQA

> B € Mat, o,
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Bob: Encrypt B € Maty»[Z/2%7)

Pl,B PZ,B
Q1,8 Ey E; Q2,8

» sky < Ex1,Px 1,041, < m 12 >,pkA < EA“LMPA“LIQQA

> B € Matyx2, enc(B) < E1, P1,5, Q1,8, E2, P2,5, Q2.8
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: Decrypt B

Ean

E1 EZ

» sky <= Ea1,Pa1,0a,1, ( 1 12 ),pkA < Ea, ptaPa, p2Qa

> B € Matyxy, enc(B) < Ei, P15, Q1,8, E2, P2,5, Q2.8
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: Decrypt B

Exn
|
B
v

Ean

7 \
deg = dida deg = 3%
— \
Eq E;
P18,Q1,8 ' diPap, 1y ' d1Qa,p

» sky <= Ea1,Pa1,0a,1, ( 1 12 ),pkA < Ea, ptaPa, p2Qa

> B € Matyx2, enc(B) < E1, P1,5, Q1,8, E2, P2,5, Q2.8
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: Decrypt B

Ean
|
B
¥
Ea
7 \
deg = dida deg = 3%

/ \
Eq E;

> sky %E,f\.h/)/\.l,Qw\.l:( 1 12 )/pkA(—EA7lL1PA7,U'2QA
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QFESTA: a PKE

Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: Decrypt B

Pa1,Qan

Ean
|
B
¥

Ean

7
deg = dida
Pi1p ~

Ql’,B Ey

> ska < Ea1,Pa1,0Qa,1, ( 1 )/pkA < Ea, paPa, 12Qa

> B € Matyx2, enc(B) < E1, P1,5, Q1,8, E2, P2,5, Q2.8

2
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Summary

Three main tools in isogeny-based cryptography:
» The class-group action.

» NIKE: CRS, CSIDH, CSUREF, SQALE, OSIDH (cf. Eli)
» Signatures: Seasign, CSI-FISh, SCALLOP

» The Deuring correspondence.
» Signatures: SQISign, SQISign2D (also uses Kani)
» Kani’s lemma.

» PKE: (Q)FESTA
» Signatures: SQISign2D

37/37



Summary

Three main tools in isogeny-based cryptography:
» The class-group action.

» NIKE: CRS, CSIDH, CSUREF, SQALE, OSIDH (cf. Eli)
» Signatures: Seasign, CSI-FISh, SCALLOP

» The Deuring correspondence.
» Signatures: SQISign, SQISign2D (also uses Kani)
» Kani’s lemma.

» PKE: (Q)FESTA
» Signatures: SQISign2D

Thank you!
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