
SLMath Summer School
Isogeny-based cryptography

Day 2

Chloe Martindale

University of Bristol

Recall: Diffie–Hellman key exchange ’76

Public parameters:
I a prime p (experts: uses F∗

p , today also elliptic curves)

I a number g (mod p) (nonexperts: think of an integer less than p)

Alice Eve Bob

skA
random←−−− {0...p−1} skB

random←−−− {0...p−1}

pkA = gskA pkB = gskB

ss := (gskB)skA ss := (gskA)skB

I Alice and Bob agree on a shared secret key ss, then they
can use that to encrypt their messages.

I Eve sees pkA = gskA , pkB = gskB ; can’t find skA, skB, ss.

Broken by Shor!

1 / 37

Recall: Diffie–Hellman key exchange ’76

Public parameters:
I a prime p (experts: uses F∗

p , today also elliptic curves)

I a number g (mod p) (nonexperts: think of an integer less than p)

Alice Eve Bob

skA
random←−−− {0...p−1} skB

random←−−− {0...p−1}

pkA = gskA pkB = gskB

ss := (gskB)skA ss := (gskA)skB

I Alice and Bob agree on a shared secret key ss, then they
can use that to encrypt their messages.

I Eve sees pkA = gskA , pkB = gskB ; can’t find skA, skB, ss.

Broken by Shor!

1 / 37

Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?

2 / 37

Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?

2 / 37

Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?

2 / 37

Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?

2 / 37

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

3 / 37

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

3 / 37

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

3 / 37

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

3 / 37

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

3 / 37

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

3 / 37

Stand back!

We’re going to do maths.

4 / 37

Maths background #1/3: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [degϕ].

5 / 37

Maths background #1/3: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [degϕ].

5 / 37

Maths background #1/3: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [degϕ].

5 / 37

Maths background #2/3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use supersingular curves!

1(up to isomorphism of E′)
6 / 37

Maths background #2/3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use supersingular curves!

1(up to isomorphism of E′)
6 / 37

Maths background #2/3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use supersingular curves!

1(up to isomorphism of E′)
6 / 37

Math slide #3/3: Supersingular isogeny graphs

Let p be a prime, q a power of p, and ` a positive integer /∈ pZ.

An elliptic curve E/Fq is supersingular if p | (q + 1−#E(Fq)).
We care about the cases #E(Fp) = p + 1 and #E(Fp2) = (p + 1)2.
 easy way to control the group structure by choosing p!

Let S 63 p denote a set of prime numbers.

The supersingular S-isogeny graph over Fq consists of:
I vertices given by isomorphism classes of supersingular

elliptic curves,
I edges given by equivalence classes1 of `-isogenies (` ∈ S),

both defined over Fq.

1Two isogenies ϕ : E→ E′ and ψ : E→ E′′ are identified if ψ = ι ◦ ϕ for
some isomorphism ι : E′ → E′′.

7 / 37

Math slide #3/3: Supersingular isogeny graphs

Let p be a prime, q a power of p, and ` a positive integer /∈ pZ.

An elliptic curve E/Fq is supersingular if p | (q + 1−#E(Fq)).
We care about the cases #E(Fp) = p + 1 and #E(Fp2) = (p + 1)2.
 easy way to control the group structure by choosing p!

Let S 63 p denote a set of prime numbers.

The supersingular S-isogeny graph over Fq consists of:
I vertices given by isomorphism classes of supersingular

elliptic curves,
I edges given by equivalence classes1 of `-isogenies (` ∈ S),

both defined over Fq.

1Two isogenies ϕ : E→ E′ and ψ : E→ E′′ are identified if ψ = ι ◦ ϕ for
some isomorphism ι : E′ → E′′.

7 / 37

Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies

8 / 37

Graphs of elliptic curves

E0E158E410
E368

E404

E75

E144

E191

E174

E413

E379

E124
E199 E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)

9 / 37

["si:­saId]

10 / 37

CRS or CSIDH

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

11 / 37

CRS or CSIDH

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

11 / 37

CRS or CSIDH

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

11 / 37

Quantumifying Exponentiation
I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.

I Replace G by the set S of supersingular elliptic curves
EA : y2 = x3 + Ax2 + x over F419.

I For every EA ∈ S, the ring of Fp-rational endomorphisms
EndFp(EA) is isomorphic to Z[

√−p].
I Replace Z by the commutative group cl(Z√−p]).
I An ideal in cl(EndFp(EA)) is the kernel of an isogeny

from EA.
I The action of a well-chosen l ∈ cl(Z[

√−p]) on S moves the
elliptic curves one step around one of the cycles.

cl(Z[
√−p])× S → S
(l,E) 7→ l ∗ E.

12 / 37

Quantumifying Exponentiation
I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.

I For every EA ∈ S, the ring of Fp-rational endomorphisms
EndFp(EA) is isomorphic to Z[

√−p].
I Replace Z by the commutative group cl(Z√−p]).
I An ideal in cl(EndFp(EA)) is the kernel of an isogeny

from EA.
I The action of a well-chosen l ∈ cl(Z[

√−p]) on S moves the
elliptic curves one step around one of the cycles.

cl(Z[
√−p])× S → S
(l,E) 7→ l ∗ E.

12 / 37

Quantumifying Exponentiation
I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I For every EA ∈ S, the ring of Fp-rational endomorphisms

EndFp(EA) is isomorphic to Z[
√−p].

I Replace Z by the commutative group cl(Z√−p]).
I An ideal in cl(EndFp(EA)) is the kernel of an isogeny

from EA.
I The action of a well-chosen l ∈ cl(Z[

√−p]) on S moves the
elliptic curves one step around one of the cycles.

cl(Z[
√−p])× S → S
(l,E) 7→ l ∗ E.

12 / 37

Quantumifying Exponentiation
I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I For every EA ∈ S, the ring of Fp-rational endomorphisms

EndFp(EA) is isomorphic to Z[
√−p].

I Replace Z by the commutative group cl(Z√−p]).

I An ideal in cl(EndFp(EA)) is the kernel of an isogeny
from EA.

I The action of a well-chosen l ∈ cl(Z[
√−p]) on S moves the

elliptic curves one step around one of the cycles.

cl(Z[
√−p])× S → S
(l,E) 7→ l ∗ E.

12 / 37

Quantumifying Exponentiation
I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I For every EA ∈ S, the ring of Fp-rational endomorphisms

EndFp(EA) is isomorphic to Z[
√−p].

I Replace Z by the commutative group cl(Z√−p]).
I An ideal in cl(EndFp(EA)) is the kernel of an isogeny

from EA.

I The action of a well-chosen l ∈ cl(Z[
√−p]) on S moves the

elliptic curves one step around one of the cycles.

cl(Z[
√−p])× S → S
(l,E) 7→ l ∗ E.

12 / 37

Quantumifying Exponentiation
I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I For every EA ∈ S, the ring of Fp-rational endomorphisms

EndFp(EA) is isomorphic to Z[
√−p].

I Replace Z by the commutative group cl(Z√−p]).
I An ideal in cl(EndFp(EA)) is the kernel of an isogeny

from EA.
I The action of a well-chosen l ∈ cl(Z[

√−p]) on S moves the
elliptic curves one step around one of the cycles.

cl(Z[
√−p])× S → S
(l3,E) 7→ l3 ∗ E.

12 / 37

Quantumifying Exponentiation
I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I For every EA ∈ S, the ring of Fp-rational endomorphisms

EndFp(EA) is isomorphic to Z[
√−p].

I Replace Z by the commutative group cl(Z√−p]).
I An ideal in cl(EndFp(EA)) is the kernel of an isogeny

from EA.
I The action of a well-chosen l ∈ cl(Z[

√−p]) on S moves the
elliptic curves one step around one of the cycles.

cl(Z[
√−p])× S → S
(l5,E) 7→ l5 ∗ E.

12 / 37

Quantumifying Exponentiation
I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I For every EA ∈ S, the ring of Fp-rational endomorphisms

EndFp(EA) is isomorphic to Z[
√−p].

I Replace Z by the commutative group cl(Z√−p]).
I An ideal in cl(EndFp(EA)) is the kernel of an isogeny

from EA.
I The action of a well-chosen l ∈ cl(Z[

√−p]) on S moves the
elliptic curves one step around one of the cycles.

cl(Z[
√−p])× S → S
(l7,E) 7→ l7 ∗ E.

12 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1] [l5, l7, l3

−1, l5]

13 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3
↑
, l7
−1, l3, l5

−1] [l5
↑
, l7, l3

−1, l5]

13 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1

↑
, l3, l5

−1] [l5, l7
↑
, l3
−1, l5]

13 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3
↑
, l5
−1] [l5, l7, l3

−1

↑
, l5]

13 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1

↑
] [l5, l7, l3

−1, l5
↑
]

13 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1] [l5, l7, l3

−1, l5]

13 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3
↑
, l7
−1, l3, l5

−1] [l5
↑
, l7, l3

−1, l5]

13 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1

↑
, l3, l5

−1] [l5, l7
↑
, l3
−1, l5]

13 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3
↑
, l5
−1] [l5, l7, l3

−1

↑
, l5]

13 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1

↑
] [l5, l7, l3

−1, l5
↑
]

13 / 37

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1] [l5, l7, l3

−1, l5]

13 / 37

Choosing parameters

In [CLMPR18], parameters are chosen as follows:
I `1, . . . , `n−1 the first n− 1 odd primes.
I `n > `n−1 the smallest prime such that p = 4`1 · · · `n − 1 is

prime.
Then:

I l1, . . . , ln correspond to kernels of Fp-rational isogenies (see
next slide) — fast.

I Allowing up to 5 actions of each l
(−1)
i covers∗ the whole

class group — security then depends on size of class group.

∗Any I ∈ cl(Z[√−p]) can be written as
∏

l
ei
i with ei ∈ [−5, . . . , 5].

14 / 37

Choosing parameters

In [CLMPR18], parameters are chosen as follows:
I `1, . . . , `n−1 the first n− 1 odd primes.
I `n > `n−1 the smallest prime such that p = 4`1 · · · `n − 1 is

prime.
Then:

I l1, . . . , ln correspond to kernels of Fp-rational isogenies (see
next slide) — fast.

I Allowing up to 5 actions of each l
(−1)
i covers∗ the whole

class group — security then depends on size of class group.

∗Any I ∈ cl(Z[√−p]) can be written as
∏

l
ei
i with ei ∈ [−5, . . . , 5].

14 / 37

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an `-isogeny
from E. To do this:

I Find a point P of order ` on E.

I Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

I Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

I For every odd prime `|(p + 1), the point p+1
` P is a point of

order `.

I Compute the isogeny with kernel {P, 2P, . . . , `P} using
Vélu’s formulas∗ (implemented in Sage).

I Given a Fp-rational point of order `, the isogeny
computations can be done over Fp.

15 / 37

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an `-isogeny
from E. To do this:

I Find a point P of order ` on E.
I Let E/Fp be supersingular and p ≥ 5.

Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

I Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

I For every odd prime `|(p + 1), the point p+1
` P is a point of

order `.

I Compute the isogeny with kernel {P, 2P, . . . , `P} using
Vélu’s formulas∗ (implemented in Sage).

I Given a Fp-rational point of order `, the isogeny
computations can be done over Fp.

15 / 37

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an `-isogeny
from E. To do this:

I Find a point P of order ` on E.
I Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or

C2 × C(p+1)/2.

I Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

I For every odd prime `|(p + 1), the point p+1
` P is a point of

order `.

I Compute the isogeny with kernel {P, 2P, . . . , `P} using
Vélu’s formulas∗ (implemented in Sage).

I Given a Fp-rational point of order `, the isogeny
computations can be done over Fp.

15 / 37

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an `-isogeny
from E. To do this:

I Find a point P of order ` on E.
I Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or

C2 × C(p+1)/2.
I Suppose we have found P = E(Fp) of order p + 1 or

(p + 1)/2.

I For every odd prime `|(p + 1), the point p+1
` P is a point of

order `.

I Compute the isogeny with kernel {P, 2P, . . . , `P} using
Vélu’s formulas∗ (implemented in Sage).

I Given a Fp-rational point of order `, the isogeny
computations can be done over Fp.

15 / 37

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an `-isogeny
from E. To do this:

I Find a point P of order ` on E.
I Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or

C2 × C(p+1)/2.
I Suppose we have found P = E(Fp) of order p + 1 or

(p + 1)/2.
I For every odd prime `|(p + 1), the point p+1

` P is a point of
order `.

I Compute the isogeny with kernel {P, 2P, . . . , `P} using
Vélu’s formulas∗ (implemented in Sage).

I Given a Fp-rational point of order `, the isogeny
computations can be done over Fp.

15 / 37

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an `-isogeny
from E. To do this:

I Find a point P of order ` on E.
I Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or

C2 × C(p+1)/2.
I Suppose we have found P = E(Fp) of order p + 1 or

(p + 1)/2.
I For every odd prime `|(p + 1), the point p+1

` P is a point of
order `.

I Compute the isogeny with kernel {P, 2P, . . . , `P} using
Vélu’s formulas∗ (implemented in Sage).

I Given a Fp-rational point of order `, the isogeny
computations can be done over Fp.

15 / 37

Representing nodes of the graph

I Every node of G`i is

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!

16 / 37

Representing nodes of the graph

I Every node of G`i is

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.

⇒ Tiny keys!

16 / 37

Representing nodes of the graph

I Every node of G`i is

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!

16 / 37

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 37

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 37

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 37

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

17 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

18 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

18 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

18 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

18 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

18 / 37

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

18 / 37

Quantum Security
Original proposal in 2018 paper: Fp ≈ 512 bits.

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).

I [BLMP19] computes one query (i.e. CSIDH-512 group
action) using 765325228976 ≈ 0.7 · 240 nonlinear bit
operations.

I Peikert’s sieve technique [P19] on fastest variant of
Kuperberg requires 216 queries using 240 bits of quantum
accessible classical memory.

I For fastest variant of Kuperberg, total cost of CSIDH-512
attack is at least 256 qubit operations.

I Overheads from error correction, high quantum memory
etc., not yet understood.

19 / 37

Quantum Security
Original proposal in 2018 paper: Fp ≈ 512 bits.

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).
I [BLMP19] computes one query (i.e. CSIDH-512 group

action) using 765325228976 ≈ 0.7 · 240 nonlinear bit
operations.

I Peikert’s sieve technique [P19] on fastest variant of
Kuperberg requires 216 queries using 240 bits of quantum
accessible classical memory.

I For fastest variant of Kuperberg, total cost of CSIDH-512
attack is at least 256 qubit operations.

I Overheads from error correction, high quantum memory
etc., not yet understood.

19 / 37

Quantum Security
Original proposal in 2018 paper: Fp ≈ 512 bits.

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).
I [BLMP19] computes one query (i.e. CSIDH-512 group

action) using 765325228976 ≈ 0.7 · 240 nonlinear bit
operations.

I Peikert’s sieve technique [P19] on fastest variant of
Kuperberg requires 216 queries using 240 bits of quantum
accessible classical memory.

I For fastest variant of Kuperberg, total cost of CSIDH-512
attack is at least 256 qubit operations.

I Overheads from error correction, high quantum memory
etc., not yet understood.

19 / 37

Quantum Security
Original proposal in 2018 paper: Fp ≈ 512 bits.

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).
I [BLMP19] computes one query (i.e. CSIDH-512 group

action) using 765325228976 ≈ 0.7 · 240 nonlinear bit
operations.

I Peikert’s sieve technique [P19] on fastest variant of
Kuperberg requires 216 queries using 240 bits of quantum
accessible classical memory.

I For fastest variant of Kuperberg, total cost of CSIDH-512
attack is at least 256 qubit operations.

I Overheads from error correction, high quantum memory
etc., not yet understood.

19 / 37

Quantum Security
Original proposal in 2018 paper: Fp ≈ 512 bits.

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).
I [BLMP19] computes one query (i.e. CSIDH-512 group

action) using 765325228976 ≈ 0.7 · 240 nonlinear bit
operations.

I Peikert’s sieve technique [P19] on fastest variant of
Kuperberg requires 216 queries using 240 bits of quantum
accessible classical memory.

I For fastest variant of Kuperberg, total cost of CSIDH-512
attack is at least 256 qubit operations.

I Overheads from error correction, high quantum memory
etc., not yet understood.

19 / 37

Better parameters - SQALE

[CCJR22] propose the SQALE of CSIDH.
I Uses huge p = 4`1 · · · `n − 1

I Uses only l±1
i

I Tiny fraction of class group used
I Not a subgroup Kuperberg has to use huge group

20 / 37

Better parameters - SQALE

[CCJR22] propose the SQALE of CSIDH.
I Uses huge p = 4`1 · · · `n − 1
I Uses only l±1

i

I Tiny fraction of class group used
I Not a subgroup Kuperberg has to use huge group

20 / 37

Better parameters - SQALE

[CCJR22] propose the SQALE of CSIDH.
I Uses huge p = 4`1 · · · `n − 1
I Uses only l±1

i
I Tiny fraction of class group used

I Not a subgroup Kuperberg has to use huge group

20 / 37

Better parameters - SQALE

[CCJR22] propose the SQALE of CSIDH.
I Uses huge p = 4`1 · · · `n − 1
I Uses only l±1

i
I Tiny fraction of class group used
I Not a subgroup Kuperberg has to use huge group

20 / 37

Better parameters - CSURF

Q: What about 2-isogenies?
I The 2-isogeny graph looks like this:

I This is called an isogeny volcano.

I Edges on the cycle are horizontal.
I Away / back to the cycle is descending / ascending.
 How to compute ‘on the surface’?

21 / 37

Better parameters - CSURF

Q: What about 2-isogenies?
I The 2-isogeny graph looks like this:

I This is called an isogeny volcano.
I Edges on the cycle are horizontal.

I Away / back to the cycle is descending / ascending.
 How to compute ‘on the surface’?

21 / 37

Better parameters - CSURF

Q: What about 2-isogenies?
I The 2-isogeny graph looks like this:

I This is called an isogeny volcano.
I Edges on the cycle are horizontal.
I Away / back to the cycle is descending / ascending.

 How to compute ‘on the surface’?

21 / 37

Better parameters - CSURF

Q: What about 2-isogenies?
I The 2-isogeny graph looks like this:

I This is called an isogeny volcano.
I Edges on the cycle are horizontal.
I Away / back to the cycle is descending / ascending.
 How to compute ‘on the surface’?

21 / 37

Better parameters - CSURF

[CD19] solve these problems:
I Set p = 4f `1 · · · `n − 1 where `1 = 2.

I Set E0/Fp : y2 = x3 − x. Then E0 is ‘on the surface’.
I For any curve on the surface, the 2-isogeny with kernel
〈(0, 0)〉 is horizontal.

22 / 37

Better parameters - CSURF

[CD19] solve these problems:
I Set p = 4f `1 · · · `n − 1 where `1 = 2.
I Set E0/Fp : y2 = x3 − x. Then E0 is ‘on the surface’.

I For any curve on the surface, the 2-isogeny with kernel
〈(0, 0)〉 is horizontal.

22 / 37

Better parameters - CSURF

[CD19] solve these problems:
I Set p = 4f `1 · · · `n − 1 where `1 = 2.
I Set E0/Fp : y2 = x3 − x. Then E0 is ‘on the surface’.
I For any curve on the surface, the 2-isogeny with kernel
〈(0, 0)〉 is horizontal.

22 / 37

Venturing further beyond the CSIDH

A selection of more advances since original publication (2018):
I sqrtVelu [BDLS20]: square-root speed-up on computation

of large-degree isogenies.
I Radical isogenies [CDV20]: significant speed-up on

isogenies of small-ish degree.
I Some work on different curve forms (e.g. Edwards).
I Knowledge of End(E0) and End(EA) breaks CSIDH in

classical polynomial time [Wes21].
I CTIDH [B2C2LMS2]: Efficient constant-time CSIDH-style

construction.

23 / 37

What about signatures? (S ‘06, DG ‘18, BKV ‘19, DFKLMPW ‘23)

Identification protocol:
I Alice generates (skA,pkA), publishes pkA.
I Alice proves to Bob that she knows skA.
I Bob verifies Alice’s proof.

Typically:
1. Prover: generates ephemeral (esk,epk), publishes epk.
2. Verifier: sends Prover a challenge c.
3. Prover: c, esk, sk proof-of-knowledge P.
4. Verifier: P, pk, epk valid (or not!)

24 / 37

What about signatures? (S ‘06, DG ‘18, BKV ‘19, DFKLMPW ‘23)

Identification protocol:
I Alice generates (skA,pkA), publishes pkA.
I Alice proves to Bob that she knows skA.
I Bob verifies Alice’s proof.

Typically:
1. Prover: generates ephemeral (esk,epk), publishes epk.

2. Verifier: sends Prover a challenge c.
3. Prover: c, esk, sk proof-of-knowledge P.
4. Verifier: P, pk, epk valid (or not!)

24 / 37

What about signatures? (S ‘06, DG ‘18, BKV ‘19, DFKLMPW ‘23)

Identification protocol:
I Alice generates (skA,pkA), publishes pkA.
I Alice proves to Bob that she knows skA.
I Bob verifies Alice’s proof.

Typically:
1. Prover: generates ephemeral (esk,epk), publishes epk.
2. Verifier: sends Prover a challenge c.

3. Prover: c, esk, sk proof-of-knowledge P.
4. Verifier: P, pk, epk valid (or not!)

24 / 37

What about signatures? (S ‘06, DG ‘18, BKV ‘19, DFKLMPW ‘23)

Identification protocol:
I Alice generates (skA,pkA), publishes pkA.
I Alice proves to Bob that she knows skA.
I Bob verifies Alice’s proof.

Typically:
1. Prover: generates ephemeral (esk,epk), publishes epk.
2. Verifier: sends Prover a challenge c.
3. Prover: c, esk, sk proof-of-knowledge P.

4. Verifier: P, pk, epk valid (or not!)

24 / 37

What about signatures? (S ‘06, DG ‘18, BKV ‘19, DFKLMPW ‘23)

Identification protocol:
I Alice generates (skA,pkA), publishes pkA.
I Alice proves to Bob that she knows skA.
I Bob verifies Alice’s proof.

Typically:
1. Prover: generates ephemeral (esk,epk), publishes epk.
2. Verifier: sends Prover a challenge c.
3. Prover: c, esk, sk proof-of-knowledge P.
4. Verifier: P, pk, epk valid (or not!)

24 / 37

Identification scheme from H × S→ S

Prover Public Verifier
E ∈ S, li ∈ H

si
$←− Z

sk =
∏

li
si ,

pk = sk ∗ E
pk // pk

ti
$←− Z

esk =
∏

li
ti ,

epk1 = esk ∗ E, epk1

.. c $←− {0, 1}c
qq

epk2 = esk · sk−c pk,epk1,epk2

.. check:

epk1 = epk2 ∗ ([skc] ∗ E).

After k challenges c, an imposter succeeds with prob 2−k.
25 / 37

From SeaSign to SCALLOP

I [S06] proposed for CRS

I [DG18] proposed SeaSign for CSIDH
I Downfall: class group structure needed for classical

efficiency
I [BKV19] proposed CSI-FiSh: computed class group for

smallest parameters
I [DFKLMPW23] proposed SCALLOP: constructs class

group with large parameters (c.f. SQALE)

26 / 37

From SeaSign to SCALLOP

I [S06] proposed for CRS
I [DG18] proposed SeaSign for CSIDH

I Downfall: class group structure needed for classical
efficiency

I [BKV19] proposed CSI-FiSh: computed class group for
smallest parameters

I [DFKLMPW23] proposed SCALLOP: constructs class
group with large parameters (c.f. SQALE)

26 / 37

From SeaSign to SCALLOP

I [S06] proposed for CRS
I [DG18] proposed SeaSign for CSIDH
I Downfall: class group structure needed for classical

efficiency

I [BKV19] proposed CSI-FiSh: computed class group for
smallest parameters

I [DFKLMPW23] proposed SCALLOP: constructs class
group with large parameters (c.f. SQALE)

26 / 37

From SeaSign to SCALLOP

I [S06] proposed for CRS
I [DG18] proposed SeaSign for CSIDH
I Downfall: class group structure needed for classical

efficiency
I [BKV19] proposed CSI-FiSh: computed class group for

smallest parameters

I [DFKLMPW23] proposed SCALLOP: constructs class
group with large parameters (c.f. SQALE)

26 / 37

From SeaSign to SCALLOP

I [S06] proposed for CRS
I [DG18] proposed SeaSign for CSIDH
I Downfall: class group structure needed for classical

efficiency
I [BKV19] proposed CSI-FiSh: computed class group for

smallest parameters
I [DFKLMPW23] proposed SCALLOP: constructs class

group with large parameters (c.f. SQALE)

26 / 37

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find a ∈ H such that

a ∗ E = E′.

SQISign is a signature scheme based on this idea:

E Eepk

Epk Ever

public, secret, ephemeral secret, public challenge, public proof

27 / 37

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny E→ E′

SQISign is a signature scheme based on this idea:

E Eepk

Epk Ever

public, secret, ephemeral secret, public challenge, public proof

27 / 37

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny E→ E′

SQISign is a signature scheme based on this idea:

E Eepk

Epk Ever

public, secret, ephemeral secret, public challenge, public proof

27 / 37

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny E→ E′

SQISign is a signature scheme based on this idea:

E

��

Eepk

Epk

Ever

public, secret, ephemeral secret, public challenge, public proof

27 / 37

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny E→ E′

SQISign is a signature scheme based on this idea:

E

��

// Eepk

Epk

Ever

public, secret, ephemeral secret, public challenge, public proof

27 / 37

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny E→ E′

SQISign is a signature scheme based on this idea:

E

��

// Eepk

��
Epk Ever

public, secret, ephemeral secret, public challenge, public proof

27 / 37

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny E→ E′

SQISign is a signature scheme based on this idea:

E

��

// Eepk

��
Epk // Ever

public, secret, ephemeral secret, public challenge, public proof

27 / 37

Evolution of key exchange

E0

EA = α ∗ E0

EB = β ∗ E0

β ∗ EA

α ∗ EB

∼ =

α ∗ (−)

β ∗ (−)
α ∗ (−)

β ∗ (−)

EA, EB

Colour code: Public, Alice’s secret, Bob’s secret

, ?!

28 / 37

Evolution of key exchange

E0

EA = α(E0)

EB = β(E0)

EAB

EBA

∼ =

α(−)

β(−)
α(−)

β(−)

EA, EB

Colour code: Public, Alice’s secret, Bob’s secret

, ?!

28 / 37

Evolution of key exchange

E0

EA = α(E0)

EB = β(E0)

EAB

EBA

∼ =

ker
α = 〈A

〉

kerβ = 〈B〉

EA, EB

Colour code: Public, Alice’s secret, Bob’s secret

, ?!

28 / 37

Evolution of key exchange

CRS or CSIDH

E0

EA = α(E0)

EB = β(E0)

EAB

EBA

∼ =

ker
α = 〈A

〉

kerβ = 〈B〉
ker =

〈β(A)〉

ker = 〈α(B)〉

EA, EB

Colour code: Public, Alice’s secret, Bob’s secret

, ?!

28 / 37

Evolution of key exchange

From CRS to SIDH

E0

EA = α(E0)

EB = β(E0)

EAB

EBA

∼ =

ker
α = 〈A

〉

kerβ = 〈B〉
ker =

〈β(A)〉

ker = 〈α(B)〉

EA, EB

Colour code: Public, Alice’s secret, Bob’s secret, ?!

28 / 37

Evolution of key exchange

From CRS to SIDH

E0

EA = α(E0)

EB = β(E0)

EAB

EBA

∼ =

ker
α = 〈A

〉

kerβ = 〈B〉
ker =

〈β(A)〉

ker = 〈α(B)〉

EA, EB

Colour code: Public, Alice’s secret, Bob’s secret, ?!

28 / 37

Evolution of key exchange

From CRS to SIDH

PA, QA,
E0,

PB,QB

EA = α(E0)

EB = β(E0)

EAB

EBA

∼ =

ker =
〈β(A)〉

ker = 〈α(B)〉

ker
α = 〈A

=PA + aQA〉

kerβ = 〈B =PB + bQB〉

EA, EB

Colour code: Public, Alice’s secret, Bob’s secret, ?!

28 / 37

Evolution of key exchange

From CRS to SIDH

PA, QA,
E0,

PB,QB

EA = α(E0)

EB = β(E0)

EAB

EBA

∼ =

ker =
〈β(A)〉

ker = 〈α(B)〉

ker
α = 〈A

=PA + aQA〉

kerβ = 〈B =PB + bQB〉

EA, α(PB), α(QB),
EB, β(PA), β(QA)

Colour code: Public, Alice’s secret, Bob’s secret

, ?!

28 / 37

Evolution of key exchange

From CRS to SIDH

PA, QA,
E0,

PB,QB

EA = α(E0)

EB = β(E0)

EAB

EBA

∼ =

ker =
〈β(A)〉

ker = 〈α(B)〉

ker
α = 〈A

=PA + aQA〉

kerβ = 〈B =PB + bQB〉

EA, α(PB), α(QB),
EB, β(PA), β(QA)

Colour code: Public, Alice’s secret, Bob’s secret

, ?!

BROKEN!

28 / 37

Evolution of key exchange

From CRS to SIDH

PA, QA,
E0,

PB,QB

EA = α(E0)

EB = β(E0)

EAB

EBA

∼ =

ker =
〈β(A)〉

ker = 〈α(B)〉

ker
α = 〈A

=PA + aQA〉

kerβ = 〈B =PB + bQB〉

EA, α(PB), α(QB),
EB, β(PA), β(QA)

Colour code: Public, Alice’s secret, Bob’s secret

, ?!

28 / 37

Evolution of key exchange

SIDH

PA, QA,
E0,

PB,QB

EA = α(E0)

EB = β(E0)

EAB

EBA

∼ =

ker =
〈β(A)〉

ker = 〈α(B)〉

ker
α = 〈A

=PA + aQA〉

kerβ = 〈B =PB + bQB〉

EA, α(PB), α(QB),
EB, β(PA), β(QA)

Colour code: Public, Alice’s secret, Bob’s secret

, ?!

28 / 37

Summary of hard problems

I CRS / CSIDH – Finding α given E and α ∗ E.

I All isogeny-based schemes – Given elliptic curves E0 and
EA, compute an isogeny α :E0→EA if it exists.

I All isogeny-based schemes – Given a random
supersingular elliptic curve E, compute End(E).

I SIDH –

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given compute α. (modulo technical restrictions)*

∗Details for the elliptic curve lovers:

p a large prime; E0/Fp2 and EA/Fp2 supersingular; deg(α), B public large smooth coprime

integers; points PB, QB chosen such that 〈PB,QB〉 = E0[B].

29 / 37

Summary of hard problems

I CRS / CSIDH – Finding α given E and α ∗ E.
I All isogeny-based schemes – Given elliptic curves E0 and

EA, compute an isogeny α :E0→EA if it exists.

I All isogeny-based schemes – Given a random
supersingular elliptic curve E, compute End(E).

I SIDH –

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given compute α. (modulo technical restrictions)*

∗Details for the elliptic curve lovers:

p a large prime; E0/Fp2 and EA/Fp2 supersingular; deg(α), B public large smooth coprime

integers; points PB, QB chosen such that 〈PB,QB〉 = E0[B].

29 / 37

Summary of hard problems

I CRS / CSIDH – Finding α given E and α ∗ E.
I All isogeny-based schemes – Given elliptic curves E0 and

EA, compute an isogeny α :E0→EA if it exists.
I All isogeny-based schemes – Given a random

supersingular elliptic curve E, compute End(E).

I SIDH –

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given compute α. (modulo technical restrictions)*

∗Details for the elliptic curve lovers:

p a large prime; E0/Fp2 and EA/Fp2 supersingular; deg(α), B public large smooth coprime

integers; points PB, QB chosen such that 〈PB,QB〉 = E0[B].

29 / 37

Summary of hard problems

I CRS / CSIDH – Finding α given E and α ∗ E.
I All isogeny-based schemes – Given elliptic curves E0 and

EA, compute an isogeny α :E0→EA if it exists.
I All isogeny-based schemes – Given a random

supersingular elliptic curve E, compute End(E).
I SIDH –

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α. (modulo technical restrictions)*

∗Details for the elliptic curve lovers:

p a large prime; E0/Fp2 and EA/Fp2 supersingular; deg(α), B public large smooth coprime

integers; points PB, QB chosen such that 〈PB,QB〉 = E0[B].

29 / 37

Summary of hard problems

I CRS / CSIDH – Finding α given E and α ∗ E.
I All isogeny-based schemes – Given elliptic curves E0 and

EA, compute an isogeny α :E0→EA if it exists.
I All isogeny-based schemes – Given a random

supersingular elliptic curve E, compute End(E).
I SIDH –

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given α(E0[B]),

compute α. (modulo technical restrictions)*

∗Details for the elliptic curve lovers:

p a large prime; E0/Fp2 and EA/Fp2 supersingular; deg(α), B public large smooth coprime

integers; points PB, QB chosen such that 〈PB,QB〉 = E0[B].

29 / 37

History of the SIDH problem

2011 Problem introduced by De Feo, Jao, and Plut
2016 Galbraith, Petit, Shani, Ti give active attack
2017 Petit gives passive attack on some parameter sets
2020 de Quehen, Kutas, Leonardi, M., Panny, Petit, Stange give

passive attack on more parameter sets
2022 Castryck-Decru and Maino-M. give passive attack on SIKE

parameter sets; Robert extends to all parameter sets
I CD and MM attack is subexponential in most cases
I CD attack polynomial-time when End(E0) known
I Robert attack polynomial-time in all cases
I Panny and Pope implement MM attack; Wesolowski

independently discovers direct recovery method

30 / 37

Petit’s trick: torsion points to isogenies

Finding the secret isogeny α of known degree, given α(E0[B]).

E0 EA
α̂

α

ι θ = α ◦ ι ◦ α̂ (+[n])

I Restriction # 1: Assume we can choose ι : E0 → E0.
I Know α(E0[B]) (and α̂(EA[B]) from public torsion points.
I Know deg(θ) = deg(α)2 deg(ι) + n2.

I Restriction # 2: If there exist ι,n such that deg(θ) = B, then
can completely determine θ, and α, in polynomial-time.

I Restriction # 2 rules out SIKE parameters, where
B ≈ deg(α) (and p ≈ B · degα).

31 / 37

Petit’s trick: torsion points to isogenies

Finding the secret isogeny α of known degree, given α(E0[B]).

E0 EA
α̂

α
ι

θ = α ◦ ι ◦ α̂ (+[n])

I Restriction # 1: Assume we can choose ι : E0 → E0.

I Know α(E0[B]) (and α̂(EA[B]) from public torsion points.
I Know deg(θ) = deg(α)2 deg(ι) + n2.

I Restriction # 2: If there exist ι,n such that deg(θ) = B, then
can completely determine θ, and α, in polynomial-time.

I Restriction # 2 rules out SIKE parameters, where
B ≈ deg(α) (and p ≈ B · degα).

31 / 37

Petit’s trick: torsion points to isogenies

Finding the secret isogeny α of known degree, given α(E0[B]).

E0 EA
α̂

α
ι θ = α ◦ ι ◦ α̂ (+[n])

I Restriction # 1: Assume we can choose ι : E0 → E0.

I Know α(E0[B]) (and α̂(EA[B]) from public torsion points.
I Know deg(θ) = deg(α)2 deg(ι) + n2.

I Restriction # 2: If there exist ι,n such that deg(θ) = B, then
can completely determine θ, and α, in polynomial-time.

I Restriction # 2 rules out SIKE parameters, where
B ≈ deg(α) (and p ≈ B · degα).

31 / 37

Petit’s trick: torsion points to isogenies

Finding the secret isogeny α of known degree, given α(E0[B]).

E0 EA
α̂

α
ι θ = α ◦ ι ◦ α̂ (+[n])

I Restriction # 1: Assume we can choose ι : E0 → E0.
I Know α(E0[B]) (and α̂(EA[B]) from public torsion points.

I Know deg(θ) = deg(α)2 deg(ι) + n2.

I Restriction # 2: If there exist ι,n such that deg(θ) = B, then
can completely determine θ, and α, in polynomial-time.

I Restriction # 2 rules out SIKE parameters, where
B ≈ deg(α) (and p ≈ B · degα).

31 / 37

Petit’s trick: torsion points to isogenies

Finding the secret isogeny α of known degree, given α(E0[B]).

E0 EA
α̂

α
ι θ = α ◦ ι ◦ α̂ (+[n])

I Restriction # 1: Assume we can choose ι : E0 → E0.
I Know α(E0[B]) (and α̂(EA[B]) from public torsion points.
I Know deg(θ) = deg(α)2 deg(ι) + n2.

I Restriction # 2: If there exist ι,n such that deg(θ) = B, then
can completely determine θ, and α, in polynomial-time.

I Restriction # 2 rules out SIKE parameters, where
B ≈ deg(α) (and p ≈ B · degα).

31 / 37

Petit’s trick: torsion points to isogenies

Finding the secret isogeny α of known degree, given α(E0[B]).

E0 EA
α̂

α
ι θ = α ◦ ι ◦ α̂ (+[n])

I Restriction # 1: Assume we can choose ι : E0 → E0.
I Know α(E0[B]) (and α̂(EA[B]) from public torsion points.
I Know deg(θ) = deg(α)2 deg(ι) + n2.

I Restriction # 2: If there exist ι,n such that deg(θ) = B, then
can completely determine θ, and α, in polynomial-time.

I Restriction # 2 rules out SIKE parameters, where
B ≈ deg(α) (and p ≈ B · degα).

31 / 37

Petit’s trick: torsion points to isogenies

Finding the secret isogeny α of known degree, given α(E0[B]).

E0 EA
α̂

α
ι θ = α ◦ ι ◦ α̂ (+[n])

I Restriction # 1: Assume we can choose ι : E0 → E0.
I Know α(E0[B]) (and α̂(EA[B]) from public torsion points.
I Know deg(θ) = deg(α)2 deg(ι) + n2.

I Restriction # 2: If there exist ι,n such that deg(θ) = B, then
can completely determine θ, and α, in polynomial-time.

I Restriction # 2 rules out SIKE parameters, where
B ≈ deg(α) (and p ≈ B · degα).

31 / 37

Enter Kani

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α. (modulo technical restrictions)*

Problem:
Not enough choices θ : EA → EA.

‘No θ of degree N.’

Solution? θ : E0 × EA → E0 × EA?
 still not enough. But! Kani’s lemma:

I Constructs E1, E2 such that there exists a
(structure-preserving) isogeny

E1 × EA → E0 × E2

of the right degree, N2.
I Petit’s trick then applies.

32 / 37

Enter Kani

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α. (modulo technical restrictions)*

Problem:
Not enough choices θ : EA → EA.

‘No θ of degree N.’

Solution? θ : E0 × EA → E0 × EA?
 still not enough. But! Kani’s lemma:

I Constructs E1, E2 such that there exists a
(structure-preserving) isogeny

E1 × EA → E0 × E2

of the right degree, N2.
I Petit’s trick then applies.

32 / 37

Enter Kani

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α. (modulo technical restrictions)*

Problem:
Not enough choices θ : EA → EA.

‘No θ of degree N.’

Solution? θ : E0 × EA → E0 × EA?
 still not enough.

But! Kani’s lemma:
I Constructs E1, E2 such that there exists a

(structure-preserving) isogeny

E1 × EA → E0 × E2

of the right degree, N2.
I Petit’s trick then applies.

32 / 37

Enter Kani

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α. (modulo technical restrictions)*

Problem:
Not enough choices θ : EA → EA.

‘No θ of degree N.’

Solution? θ : E0 × EA → E0 × EA?
 still not enough. But!

Kani’s lemma:
I Constructs E1, E2 such that there exists a

(structure-preserving) isogeny

E1 × EA → E0 × E2

of the right degree, N2.
I Petit’s trick then applies.

32 / 37

Enter Kani

There are public elliptic curves E0 and EA, and a secret isogeny
α : E0→EA. Given the points PB, QB on E0 and α(PB), α(QB),

compute α. (modulo technical restrictions)*

Problem:
Not enough choices θ : EA → EA.

‘No θ of degree N.’

Solution? θ : E0 × EA → E0 × EA?
 still not enough. But! Kani’s lemma:

I Constructs E1, E2 such that there exists a
(structure-preserving) isogeny

E1 × EA → E0 × E2

of the right degree, N2.
I Petit’s trick then applies.

32 / 37

Recovering the secret

with Robert’s trick

Finding the secret isogeny α of known degree.

E0

4

EA

4

α̂

α

4

ι

ϕ f

constructs the above such that

Φ =

(
ϕ −α̂

4

∗ ∗

)
: ×EA → E0×

is a structure preserving isogeny of degree N2, and
 can compute Φ and read off secret α!

33 / 37

Recovering the secret

with Robert’s trick

Finding the secret isogeny α of known degree.

E0

4

EA

4

α

4

E1

ϕ

f

constructs the above such that

Φ =

(
ϕ −α̂

4

∗ ∗

)
: ×EA → E0×

is a structure preserving isogeny of degree N2, and
 can compute Φ and read off secret α!

33 / 37

Recovering the secret

with Robert’s trick

Finding the secret isogeny α of known degree.

E0

4

EA

4

α

4

E1

ϕ

E2

f

Kani’s lemmaconstructs the above such that

Φ =

(
ϕ −α̂

4

∗ ∗

)
: E1 × EA → E0 × E2

is a structure preserving isogeny of degree N2, and

ker(Φ) = {(deg(α)P, f (P)) : P ∈ E1[N]}

 can compute Φ and read off secret α!
33 / 37

Recovering the secret with Robert’s trick
Finding the secret isogeny α of known degree.

E0
4 EA

4
α4

E4
0

ϕ

E4
A

f

constructs the above such that

Φ =

(
ϕ −α̂4

∗ ∗

)
: E4

0 × E4
A → E4

0 × E4
A

is a structure preserving isogeny of degree N2, and

ker(Φ) is known

 can compute Φ and read off secret α!
33 / 37

Power unleashed

Consequence 1: Factoring isogenies.

E0 EAα

E1

ϕ

E2

f

Kani’s lemma states that

Φ =

(
ϕ −α̂
∗ ∗

)
: E1 × EA → E0 × E2

is a structure preserving isogeny of degree B2, and

ker(Φ) = {(deg(α)P, f (P)) : P ∈ E1[B]}.

34 / 37

Power unleashed

Consequence 1: Factoring isogenies.

E0 EAα

E1

ϕ

E2

f

Kani’s lemma states that

Φ =

(
ϕ −α̂
∗ ∗

)
: E1 × EA → E0 × E2

is a structure preserving isogeny of degree B2, and

ker(Φ) = {(deg(α)P, f (P)) : P ∈ E1[B]}.

34 / 37

Power unleashed

Consequence 2: Let
I α : E0 → EA be an isogeny.
I B a smooth integer, 〈PB,QB〉 = E0[B].

Then:
I α can be stored efficiently as α(PB), α(QB).
I images under α can be efficiently computed from this

representation.
Doesn’t require deg(α) to be smooth!

35 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

E0

EA,1 EA EA

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

E1 E2

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)

,

pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2

,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

E0 EA,1ϕA,dA,1

EA EA

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

E1 E2

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)

,

pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2

,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

E0 EA,1ϕA,dA,1 EAϕA,3b

EA

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

E1 E2

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)

,

pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2

,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

E0 EA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

E1 E2

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)

,

pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2

,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

E0 EA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

E1 E2

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)

,

pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2

,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

E1 E2

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
,

pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2

,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: KeyGen

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

E1 E2

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
, pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2

,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Bob: Encrypt B ∈Mat2×2[Z/23aZ]

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

E1 E2

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
, pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Bob: Encrypt B ∈Mat2×2[Z/23aZ]

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

ϕB,d1
ϕB,32b

E1 E2

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
, pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Bob: Encrypt B ∈Mat2×2[Z/23aZ]

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

ϕB,d1
ϕB,32b

E1 E2

B∗ B∗

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
, pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Bob: Encrypt B ∈Mat2×2[Z/23aZ]

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

ϕB,d1
ϕB,32b

E1 E2

B∗ B∗

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
, pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2,

enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Bob: Encrypt B ∈Mat2×2[Z/23aZ]

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

ϕB,d1
ϕB,32b

E1 E2

B∗ B∗

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
, pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2, enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: Decrypt B

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

ϕB,d1
ϕB,32b

E1 E2

B∗ B∗

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
, pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2, enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: Decrypt B

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

ϕB,d1
ϕB,32b

E1 E2

B∗ B∗

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

deg = d1dA,1 deg = 33b

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
, pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2, enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: Decrypt B

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

ϕB,d1
ϕB,32b

E1 E2

B∗ B∗

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

deg = d1dA,1 deg = 33b

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
, pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2, enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

QFESTA: a PKE
Colour code: Public, Alice’s secret, Bob’s secret, unknown

Alice: Decrypt B

E0 EA,1ϕA,dA,1ϕA,dA,1 EAϕA,3b EA
(

µ1
µ2

)
∗

P0,Q0 PA,1,QA,1 PA,QA µ1PA, µ2QA

E1 E2

ϕB,d1
ϕB,32b

E1 E2

B∗ B∗

P0
Q0

P1
Q1

P1,B
Q1,B

µ1PA
µ2QA

P2
Q2

P2,B
Q2,B

P1,B
Q1,B

PA,1,QA,1

P1,B,Q1,B µ−1
1 d1P2,B, µ

−1
2 d1Q2,B

EA,1

B∗

deg = d1dA,1 deg = 33b

I skA ← EA,1, PA,1,QA,1,

(
µ1

µ2

)
, pkA ← EA, µ1PA, µ2QA

I B ∈ Mat2×2, enc(B)← E1, P1,B,Q1,B, E2, P2,B,Q2,B

36 / 37

Summary

Three main tools in isogeny-based cryptography:
I The class-group action.

I NIKE: CRS, CSIDH, CSURF, SQALE, OSIDH (cf. Eli)
I Signatures: Seasign, CSI-FISh, SCALLOP

I The Deuring correspondence.
I Signatures: SQISign, SQISign2D (also uses Kani)

I Kani’s lemma.
I PKE: (Q)FESTA
I Signatures: SQISign2D

Thank you!

37 / 37

Summary

Three main tools in isogeny-based cryptography:
I The class-group action.

I NIKE: CRS, CSIDH, CSURF, SQALE, OSIDH (cf. Eli)
I Signatures: Seasign, CSI-FISh, SCALLOP

I The Deuring correspondence.
I Signatures: SQISign, SQISign2D (also uses Kani)

I Kani’s lemma.
I PKE: (Q)FESTA
I Signatures: SQISign2D

Thank you!

37 / 37

References

[B2C2LMS2] ctidh.isogeny.org

[BD17] ia.cr/2017/334

[BDLS20] velusqrt.isogeny.org

[BEG19] ia.cr/2019/485

[BLMP19] quantum.isogeny.org

[CCJR22] ia.cr/2020/1520

[CD19] ia.cr/2019/1404

[CDV20] ia.cr/2020/1108

[FM19] ia.cr/2019/555

[GMT19] ia.cr/2019/431

[Wes21] ia.cr/2021/1583

37 / 37

ctidh.isogeny.org
ia.cr/2017/334
velusqrt.isogeny.org
ia.cr/2019/485
quantum.isogeny.org
ia.cr/2020/1520
ia.cr/2019/1404
ia.cr/2020/1108
ia.cr/2019/555
ia.cr/2019/431
ia.cr/2021/1583

