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Cryptography

Allows for secure communication in the presence of malicious parties




Cryptography

Large increase in the adversary’s computing power

requires only a small increase in the key size




Cryptography

A quantum computer is outside the standard

model of computation for efficiency purposes




Symmetric-Key Cryptography
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Symmetric-Key Cryptography

Will still exist if guantum computers are built

Secret Key =s




Public-Key Cryptography

Secret Key =s
Public Key = p




Public-Key Cryptography

Public Key = p

: Secret Key =s
Public Key = p Public Key 5




Mathematical Assumptions for
Public-Key Cryptography

Computingd] ogs is hard

Factoking”ls hard

ND

Mostly problems from number theory

All broken once a quantum computer is built



Consequence of qguantum computing

Current public key schemes will be broken

Quantum computers will recover all of today’s secrets
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Do not need quantum to defend against
quantum

Quantum computers are not all-powerful.
They simply solve some problems faster.
Base cryptography on problems they don’t solve.

How do we know that (quantum) computers don’t solve a problem?

We don’t ... all we can say is that researchers tried to solve the
problem for X decades and failed.



Effect of quantum computers

* Symmetric Cryptography
* Mostly fine

e Public-Key Cryptography
* Everything used today — broken!

Timeline for change to Quantum-Safe (post-quantum) Crypto:
Algorithm Selection: 2017 — 2022
Writing Standards: 2022 — 2024
Transition should be complete (NSA): 2030-2035



Public-Key Encryption
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Public-Key Encryption

Public Key = p

Secret Key =s

Public Key = p

-/ m=Dec(s,c)

Message m o
c=Enc(p,m) ) -§.




What is Secure Encryption?
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Public Key Cryptography
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Formal Definition

For any two messages m, and m, of the adversary’s choosing, he
cannot distinguish between

* ¢, =Enc(m,)
* ¢, = Enc(m,)

Encryption needs to be randomized



Building Cryptography

Cryptographic

Mathematical '

Proof that breaking the
cryptographic scheme
implies solving the
mathematical problem

Scheme

Problem




Lattice Cryptography

* NIST had a competition to create new quantum-safe cryptographic
standards

* RSA / Discrete Log / Elliptic Curve cryptography will be phased out by
2033 (at least in the US government)

* Main 2 standards - encryption and digital signature - selected are
lattice-based

(CRYSTALS-Kyber, CRYSTALS-Dilithium)



Learning with Errors Problem
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Easy! Just invert A and multiply by z

Hard Problem Intuition
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Given (A,z), find y

mod p



/

-

Hard
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Small coefficients

Given (A,z), find (y,e)

Seems hard.

mod p
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Hard Problem Intuition
(Learniqg With Errors)

J

Small coefficients to enforce uniqueness
Given (A,z), find (y,e)

Seems hard.
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Why is this “Lattice” Crypto?

All solutions (3;) to Ay+e=z mod p form a “shifted” lattice.

We want to find the point closest to the origin (BDD Problem).
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Distinguishing from Random is also Hard
Search LWE Problem: Given (A,t=As+e mod p), find s

Decision LWE Problem: Given either (A, t=As+e mod p) or (A,u),
where u is random mod p, figure out which tuple you have
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Looks Random mod p




Public Key Encryption from LWE



“Column” LWE is Pseudorandom
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“Row” LWE is also Pseudorandom
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Secret K '
ecre ey\ Encryption Scheme
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A is random




Encryption Scheme
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Is pseudo-random based on the hardness —

of the Learning with Errors Problem



Encryption Scheme
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Encryption Scheme
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Encryption Scheme

I

u = +

S represent 0 by m=0
represent 1 by m=(p-1)/2

Encrypts only 1 bit — large ciphertext expansion
1 bit requires n elements in Z,



Decryption Error

Public Key: A, t = As+e

Ciphertext: u =rA+e,, v=rt + e, + m(p/2)

Decryption: v-us =r(As+e) +e, + m(p/2) — (rA+e,)s
=re+e,+m(p/2)-e;s

Need the total error re +e, - e;s to be < p/4

(let’s ignore e,, since it’s just an integer)
Say each coefficient of s, r, e, e,, e, is uniformly random in {-1,0,1},
how do you make sure that the inequality is satisfied?



Decryption Error

* Can set p large enough so thatre-e;stobe<p/4 -1
* If the length of the vectors is n, then the maximum value is 2n
* But intuitively, we expect the value to be around v/n
* So we will set p unnecessarily large

e Can use various inequalities (e.g. Chernoff, Hoeffding) and get closer

to+/n

* But we can do this much easier and more precisely



Decryption Error via Convolution

Let’s look at re = )} 1; e; as the sum of n independent random variables

What'’s the distribution of re; ?
s Pr[-1]=2/9
Pr[0] =5/9
Pr[1] =2/9

Write it as the polynomial p(X)=(2/9) X1 + (5/9)X° + (2/9)X*
What'’s the distribution of re; + re;?
Compute the product P(X)*P(X) and read off the coefficients!

Pr(re;+ rie; = c] = the coefficient of X®in P(X)*P(X)

So Pr(re - e;s = c] = the coefficient of X®in P(X)*"



Problem Session

1. Implement the Encryption scheme:

* p=257
e Dimensions of A =64 x 64

. gist)ribution of s,e,r,e e, is Binomial: i.e. each coefficient is b+ b, — b,— b, (b, are
its

2. Write a script to compute the decryption error



Plan for the Week

Improve efficiency by working with polynomial rings
Number Theory Transform (like FFT)

Intro to Zero-Knowledge Proofs

Digital Signatures

Connection of these Constructions to Geometric Lattices



Supplementary Reading

https://github.com/VadimLyubash/LatticeTutorial/

(Today covered pages 1- 8)


https://github.com/VadimLyubash/LatticeTutorial/
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