Multivariate Cryptography
Introduction to Quantum-Safe Cryptography (IBM Zurich),
Programming assignment
July 1 - July 5, 2024

Remarks:

e You will need Python and Sagemath for completing this exercises

e You can follow the instructions at https://sagemanifolds.obspm.fr/install_ubuntu.
html to install the latest version of Sagemath and use it within a Jupyter notebook (you can
also use Sagemath in a console, if you prefer)

Goals: After completing the exercises in this programming assignment you will have a solid
understanding of how UOV works and what are the currently best algorithms for cryptanalysis.
You will further have an implementation of both the scheme and the attacks.

1. (UOV design) In this first exercise ywe will implement UOV. To make it easier for you,
we will guide you in the process and provide you with steps you can follow and turn them
into an actual implementation.

(a) The easiest way to implement multivariate cryptography is to use a matrix represen-
tation of the (homogeneous) quadratic maps. Therefore it is usefull to create helper
functions for

e Generating random invertible matrices
RandomInvertible(n)

e Turning a square matrix to upper-diagonal
SquareToUpper (M)

e Turning an upper diagonal matrix to symmetric
UpperToSymmetric (M)

e Evaluation of multivariate maps.
MQeval(F,x,y)

(b) Create a function for key generation that returns the public key and the secret key
Keygen(q,n,m)

(¢) Create a function for signing a message m that returns the message and the signature
Sign(message, private_key)
You will need to hash the message first, for which you can use hashlib

(d) Create a function for verification of a signature
Verify(message, signature, public_key)

2. (UOV key compression) The previous exercise is not concerned with the sizes of the keys.
We did not even bother to store them well. In this exercise we will apply an optimization on
UOV, that helps reduce the key sizes. We will use the equivalent keys technique to generate
the keys

(a) Update the key generation algorithm from the previous exercise to implement the equiv-
alent keys technique for generating the public and the private key. Make sure to use
a public and a private seed. In the interest of time, you don’t have to implement the
seed generation in a cryptographically secure manner, but you can try this at home.

(b) In order to be able to use the keys for signing and verification, you will need to decom-
press the keys in the form used in the signing and verification procedure.
Decompress (pk_compressed, sk_compressed)



3. (UOV attacks) Finally we implement (some of) the state-of-the-art algorithms against
UOV:

(a) Direct signature forgery attack

e For this attack you simply need to run an algebraic solver for a given signature
value. Sage has a (not so fast) implementation of Faugere’s F4 algorithm that you
can use. Recall that since UOV gives an underdetermined system of equations, you
need to first fix a certain number of variables.

(b) Reconciliation attack
e For educational purposes, you can start with the simplest iterative description of
the attack, where in each step you find one oil vector.
e Then notice how many vectors you will need to look for at once in the first iteration.
e Afterwards notice, and implement the remaining steps as solving a linear system
of equations
(¢) Intersection attack

e The intersection attack looks for one intersection vector that maps to two different
oil vectors that can be used in the reconciliation attack. Thus you can reuse the
code from the previous point. You only need to implement an assitional part for
forming the intersection vector.

(d) Rectangular MinRank attack

e This attack consists of two parts:
— Changing “the view” on the public matrices (basically turning them around for
90 degrees)
— Implementing a MinRank attack
These can be implemented as two separate functionalities. You are free to use any
MinRank model, but we recommend the simple Kipnis-Shamir model, that nicely
corresponds to direct retrieval of the secret input change of basis (the secret S).



