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Schedulle (tentative)

• Monday - Designs

• General
• Classic designs

• Tuesday - Design and general MQ solving techniques

• Key size optimization techniques
• Algorithms for solving the MQ problem

• Wednesday - Cryptanalysis

• MinRank
• Equivalent keys attacks

• Thursday - Cryptanalysis and provably secure designs

• Attacks on UOV
• Fiat-Shamir signatures I

• Friday - Provably secure designs

• Fiat-Shamir signatures II
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Notations

• Fq – finite field of q elements,

• Fm
q – vector space of vectors (u1, u2, . . . , um) over Fq

• Fqm – extension field of Fq of degree m

• Fq[x1, . . . , xn] – ring of polynomials over Fq in the variables x1, . . . , xn

• polynomial ideal - subset of Fq[x1, . . . , xn] closed under linear combination with polynomial

coefficients

• GLn(Fq) – general linear group of degree n over Fq.

• x = (x1, . . . , xn) – row vectors in Fn
q, x

⊤ = (x1, . . . , xn)
⊤ – column vectors in Fn

q

• p(x1, . . . , xn) =
∑

1≤i≤j≤n

αijxixj – quadratic form

• matrix form P̄ = P+ P⊤, where Pij = αij/2 over char ̸= 2 or Pij = αij over char = 2
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Multivariate cryptography

• Cryptosystems whose security is based on the MQ-problem over Fq

• MQ stands for Multivariate Quadratic
• Finding a solution to a system of m quadratic equations over a finite field in n

variables
• Decisional variant is NP-complete problem

• More general PoSSo problem for higher degree equations
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Multivariate cryptography

• Symmetric (stream cipher QUAD) but mostly public key designs

• Mostly signatures

• Mostly ad-hoc designs, but there are also provably secure ones

• Shaky history due to break and patch approach

• ETSI finalist SFLASH was broken

• NIST submissions:

• LUOV, Rainbow, GeMSS – short signatures, big keys, ad-hoc

• all broken! GeMSS severely, Rainbow as finalist

• MQDSS – short keys, big signatures, provably secure

• Additional NIST round ongoing

• many UOV variants! - UOV, MAYO, TUOV, PROV, VOX, etc.
• also some Fiat-Shamir signatures - MQOM, ALTEQ∗, MEDS∗

∗ - based on variants of the Isomorphism of Polynomials problem
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MQ crypto Prime Time

MIA [IM85]

C* [MI88]

Birational Permutation [Sha93]

HFE [Pat96]

OV [Pat97]

UOV [KPG99]

Quartz [PCG01b] 

Sflash [PCG01a, CGP03]

Rainbow [DS05]

MIA and C* [Pat95]

Birational Permutation 
[CSV93, The95, CSV97]

OV [KS98]

HFE [KS99, FJ03, GJS06, DG10, DH11]

Sflash [DFSS07]

PMI [FGS05]

1985

1990

1995

2000

2005

Constructions Cryptanalysis
MQ

Thomae 13

PMI [Din04], RSE(2)PKC [KS04]

RSSE(2)PKC [KS05a]
RSE(2)PKC,RSSE(2)PKC [WBP04]

Interest seriously declines
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The MQ problem

Computational MQ problem

Given: m multivariate polynomials p1, p2, . . . , pm ∈ Fq[x1, . . . , xn] of degree 2

Find: (if any) a vector (u1, . . . , un) ∈ Fn
q such that

p1(u1, . . . , un) = 0

p2(u1, . . . , un) = 0

. . .

pm(u1, . . . , un) = 0

How hard is it actually?

• Easy when m > number of monomials of degree 2

• linearize and solve as a system of linear equations

• hardest case n ≈ m

• Complexity well understood for “random” systems (correct: systems without structure)

• Gröbner bases, XL, Joux-Vitse algorithms
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MQ problem: numerical example

• Example parameters: n = m = 3, Fq = F5

• Random system of polynomials F :

y1 = 4x1x1 + 3x1x2 + 0x1x3 + x2x2 + 2x2x3 + x3x3 + 0x1 + 2x2 + 2x3

y2 = x1x1 + 2x1x2 + x1x3 + 0x2x2 + 3x2x3 + 4x3x3 + 0x1 + 3x2 + 2x3

y3 = 0x1x1 + x1x2 + 4x1x3 + 3x2x2 + 0x2x3 + x3x3 + 4x1 + x2 + 0x3

• ‘Secret’ input x = (1, 4, 3)

y1 = 4 · 1 · 1 + 3 · 1 · 4 + 4 · 4 + 2 · 4 · 3 + 3 · 3 + 2 · 4 + 2 · 3 = 79 ≡ 4

y2 = 1 · 1 + 2 · 1 · 4 + 1 · 3 + 3 · 4 · 3 + 4 · 3 · 3 + 3 · 4 + 2 · 3 = 102 ≡ 2

y3 = 1 · 4 + 4 · 1 · 3 + 3 · 4 · 4 + 3 · 3 + 4 · 1 + 4 = 81 ≡ 1

• ‘Public’ output y = (4, 2, 1)
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Multivariate signatures – the ad-hoc construction

• Start with a structured central map that is easily invertible

F : (x1, . . . , xn) ∈ Fn
q →

(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
∈ Fm

q ,

• Hide the structured central map, using two bijective linear maps S and T

• The public key P : Fn
q → Fm

q is then obtained as

P = T ◦ F ◦ S

• and basically looks like P(x1, . . . , xn) = (p1(x1, . . . , xn), . . . , pm(x1, . . . , xn))

where ps(x1, . . . , xn) =
∑

1≤i≤j≤n

α
(s)
ij xixj +

∑n
i=1 β

(s)
i xi + γ(s) for some coefficients α

(s)
ij , β

(s)
i , γ(s) ∈ Fq

Fn
q Fm

q

Fn
q Fm

q

P
public key

S T
private key

F

Key generation
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Multivariate signatures – the ad-hoc construction

• To sign a message m,

• hash the message H(m)
• apply the inverses of the secret maps T , F , S

σ = S−1 ◦ F−1 ◦ T −1(H(m))

• To verify a signature σ,

• evaluate the polynomials P at σ and
• check if it matches H(m)

Fn
q Fm

q

Fn
q Fm

q

P
public key

S T
private key

F
Key generation

Fn
q Fm

q

Fn
q Fm

q

P
Verification

S−1 T −1

Signing

F−1

Signing/Verification
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The ad-hoc construction - Signature and key sizes

• Signature ∈ Fn
q - hence only log q · n bits

• Private key - can be generated from seed - hence only store a small seed (ex. 256 bits)

• Public key typically can’t be compressed

• m degree 2 homogeneous polynomials in n over ∈ Fq - hence log q ·

(
n + 1

2

)
bits

• there are some optimization techniques we discuss later
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Families of ad-hoc multivariate signatures

• Mixed-field schemes

• Secret key defined over extension field, and transformed in the ground field
• C∗, HFE variants including GeMSS

• Single field schemes

• Defined over and all operations in a single field
• Oil and vinegar schemes (UOV, LUOV, MAYO, Rainbow)
• Step-wise triangular schemes (TTS, TTM, MQQ-sig, Rainbow)
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Mixed-field schemes



General principle of mixed-field schemes

• Central map F constructed in extension field Fqn as a univariate map F̃ .
• (Fqn constructed as quotient ring Fq[X ]/g(X ) for irreducible g(X ) of degree n)

• Then mapped bijectively to the ground field using ϕ : Fqn → Fn
q defined by:

ϕ(
n−1∑
0

uiXi ) = (u1, . . . , un)

for a basis (1,X . . . , xn−1) ∈ Fn
qn of Fqn over Fq

• Public key P then obtained by masking over the ground field with S and T

Fn
q Fm

q

Fn
q Fm

q

Fqn Fqm

P

S T

F

ϕ ϕ−1

F̃

Figure: General principle of a mixed field MQ scheme.
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C∗ [Matsumoto and Imai ’85]

• Central map over extension field extremely simple – permutation monomial of algebraic degree 2:

F̃(X ) = X qt+1

where gcd(qt + 1, qn − 1) = 1 (condition for bijectivity). Secret key is t.

• The inverse can be computed as

F̃
−1

(Y ) = Y h

where h is the multiplicative inverse of qt + 1 modulo qn − 1.

• Very easy to break! [Message recovery attack Patarin ’95]

• input X and the output Y of the map connected as

Y qt−1XY = (X qt+1)q
t−1XY

XY qt = X q2tY

• ⇒ bilinear relation between secret input X and known output Y
• Attack step 1: Collect many input-output pairs to form a bilinear system
• Attack step 2: In the bilinear system plug in Y , and solve for X
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C∗ modifications

• C∗− scheme using the “minus” modifier

• used in SFLASH - a signature scheme proposed by Patarin, Goubin and Courtois in 2001

• SFLASH was selected in 2003 by the NESSIE European Consortium as one of the three

recommended public key signature schemes, and as the best known solution for low cost

smart cards

• It was broken in 2007 by Dubois using a differential attack

• pFLASH - proposed in 2015

• projection modifier (project the input to smaller hyperplane)
• broken in 2021 - øygarden, Smith-Tone, Verbel
• uses attack by Tao, Petzoldt, Ding ’20 that applies to virtually all HFE variants with

modifiers
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HFE (Hidden field equation) [Patarin ’96]

• Original HFE proposed by Patarin in ’96 as a direct generalization of C∗

• Uses general quadratic polynomial (Dembowski-Ostrom polynomial) over Fqn

F̃(X ) =
∑

0 ≤ i, j ≤ D

qi + qj ≤ D

aijX
qi+qj

+
∑

0 ≤ k ≤ D

qk ≤ D

bkX
qk

+ c

• Degree D must be bounded for efficient inversion (signing)

• Inversion of polynomial done using Berlekamp’s algorithm

• The DO polynomial is not a bijection in general, so no guarantees for

• Existence of signatures (can be fixed by a diversifier)
• Unique decryption if used as an encryption scheme (can be fixed by adding some

disambiguation in the plaintext)
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HFE security

• Key recovery attacks
• MinRank over extension field [Kipnis and Shamir ’99]
• MinRank over ground field [Bettale, Faugère, Perret ’11]

• Message recovery attacks
• Faugère solved HFE Challenge 1 (HFE over GF2, d = 96) in 2002
• System can be solved much faster than a random system
• Ding and Hodges prove that degree of regularity is connected to the degree D of the DO

polynomials

• Efficiency and security contradict each other
• Signing using Berlekamp is O(nD)
• Attacks O(nq logq D)
• For q = 2, D = 512, attack is quite low

• Conclussion: HFE is not secure!

• Several fixes proposed
• HFEv- survived the longest (Quartz, GUI, GeMSS)
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HFEv- and GeMSS (finalist in NIST standardization process)

• HFEv- = HFE + vinegar modification + minus modification

• vinegar mod. adds v extra vinegar variables
• minus mod. removes a polynomials from the public key

• Central map is: F̃(X ) : Fv
q × Fqn → Fqn

F̃(X ) =
∑

0 ≤ i, j ≤ D

qi + qj ≤ D

aijX
qi+qj +

∑
0 ≤ k ≤ D

qk ≤ D

bk(v1, v2, . . . , vv )X
qk + c(v1, v2, . . . , vv )

• Signing:

• Compute w = H(m) ∈ Fn−a
q

• Compute u = T −1(w) ∈ Fn
q and U = ϕ−1(u) ∈ Fqn

• Choose random values for the vinegar variables v1, . . . , vv
• Solve F̃ v (Y ) = U over Fqn via Berlekamp’s algorithm
• Compute y = ϕ(Y ) ∈ Fn

q

• Signature is σ = S−1(y||v1||...||vv )
• Verification works as usual
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Security of GeMSS (finalist in NIST standardization process)

• Just an HFEv- scheme

• Several iteration of MinRank:

• Min-Q-rank attack

O(

(
n + logq D + a+ v + 1

logq D + a+ v + 1

)ω

)

• MinRank style attack [Tao, Petzoldt, Ding ’21]

O(

(
n + logq D + v + 1

logq D + v + 1

)ω

)

• Completely independent of a

• Not feasible anymore to create an efficient scheme

• GeMSS completely broken!

• NIST security level III should be: D ≥ 219!
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Single field schemes



Layered schemes

• The central map defined by several layers, in each layer several new variables introduced

• In matrix form, the central (symmetric) matrices are:

· · ·

· · ·

· · ·

...
...

...

f1 fd+1

f2 fd+2

fd f2d

fn−d+1

fn−d+2

fn

• The structure can be disguised

(TTS, EnTTS, MQQ-sig)

• Very susceptible to rank defect

attacks!

• And these attacks only get better :)
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Unbalanced Oil and Vinegar (UOV)

• Proposed by Kipnis and Patarin ’99 as amendment of the Oil and Vinegar scheme by Patarin

(broken by Kipnis and Shamir ’98)

• The central map F : Fn → Fo is F(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fo(x1, . . . , xn)) where

f (s)(x) =
∑
i,j∈V
i≤j

αij
(s)xixj +

∑
i∈V
j∈O

βij
(s)xixj

where α
(s)
ij - coefficients of the vinegar-vinegar, the β

(s)
ij of the oil-vinegar monomials

• V = {1, 2, . . . , v} - index set of vinegar vars, O = {v +1, v +2, . . . , n} - index set of oil vars

• In matrix form, the central matrices are

• No T map - not necessary and does not add to the security! Why?
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UOV baby example

Central map F : F4
2 → F2

2

Vinegar variables x1, x2 & Oil variables x3, x4

f1(x1, x2, x3, x4) = x1x2 + x1x3 + x2x4 + x3

f2(x1, x2, x3, x4) = x1x4 + x2x3 + x2x4 + x3

Linear S =


1 1 0 0

0 1 1 0

1 1 0 1

0 1 0 0


Public map P = F ◦S : F4

2 → F2
2

p1(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x4 + x4

p2(x1, x2, x3, x4) = x1x3 + x2x4 + x3x4 + x1 + x4

All monomials appear! Looks “random”

To sign a message m,

• hash the message (h1, h2) = H(m)

• fix randomly the vinegar variables

f1(c1, c2, x3, x4) = c1c2 + c1x3 + c2x4 + x3

f2(c1, c2, x3, x4) = c1x4 + c2x3 + c2x4 + x3

• Solve the linear system

c1c2 + c1x3 + c2x4 + x3 = h1

c1x4 + c2x3 + c2x4 + x3 = h2

• The solution is (c3, c4) (
∗-repeat if no

solution)

• The signature is

σ = (s1, s2, s3, s4) = S−1(c1, c2, c3, c4)
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To sign a message m,

• hash the message (h1, h2) = H(m)

• fix randomly the vinegar variables

f1(c1, c2, x3, x4) = c1c2 + c1x3 + c2x4 + x3

f2(c1, c2, x3, x4) = c1x4 + c2x3 + c2x4 + x3

• Solve the linear system

c1c2 + c1x3 + c2x4 + x3 = h1

c1x4 + c2x3 + c2x4 + x3 = h2

• The solution is (c3, c4) (
∗-repeat if no

solution)

• The signature is

σ = (s1, s2, s3, s4) = S−1(c1, c2, c3, c4)
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Multivariate signatures – Rainbow

• In UOV, it should hold v ≈ 3o, otherwise not secure

• big overhead in size of keys and signature

• Rainbow - proposed by Ding & Schmidt ’04 as a more efficient variant of UOV

• Rainbow = Layered UOV (typically, two layers of UOV)

• The central map F : Fn → Fn−v1 is F(x1, . . . , xn) = (fv1+1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) where

f (s)(x) =
∑

i,j∈Vℓ
i≤j

αij
(s)xixj +

∑
i∈Vℓ
j∈Oℓ

βij
(s)xixj , for s ∈ Oℓ

• O0 = ∅, V1 = {1, 2, . . . , v1}, O1 = {v1 + 1, . . . , v2}, V2 = {1, . . . , v2}, O2 = {v2 + 1, . . . , n}
• In matrix form, for parameters v1 = |V1| = 18, o1 = |O1| = 12, o2 = |O2| = 12

F̄(1), . . . , F̄(12) ¯F(13), . . . , F̄(24)
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Security of UOV

• In UOV, it should hold v ≈ 3o, otherwise not secure

• v = o - (O& V) broken using invariant subspace attack
• v >> o - easy as a function of n
• 2o < v < 3o - sweet spot

• Cryptanalytical techniques (≈ 15 years old)

• Invariant subspace attack
• Direct attack
• Reconciliation attack

• Parameters for 128 bits security based on these attacks

• q = 256, n = 103,m = 44, private key 194, 7KB, public key 235, 6KB (plain UOV)
• q = 256, n = 103,m = 44, private key 116, 8KB, public key 43, 6KB (UOV using eq. keys)

• Beullens in 2020 - reduced the security to 95 bits!

• Current NIST level 1 security parameters (143 bits)

• q = 16, n = 160,m = 64, public key 66, 6KB (with compression)
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Security of Rainbow

• All attacks from UOV plus more!

• Specific cryptanalytical techniques (≈ 10 years old)

• MinRank and HighRank
• Rainbow band separation attack

• NIST finalist, security believed to be well understood

• Submitted NIST level 1 security parameters

• (GF (16), 32, 32, 32), q = 16, n = 96,m = 64, private key 97.9KB, public key 148.5KB,

signature 64 bytes

• Beullens in 2020 - reduced the security to 123 bits!

• Beullens in 2022 - breaks practically this parameters set (61 bits of security)

• Can be fixed, but not competitive to UOV any more!
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Summary

Today:

• Multivariate signatures - classic designs

Tomorrow:

• Key size optimization techniques

• Solving the MQ problem
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