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Schedulle (tentative)

® Monday - Designs
® General
® (Classic designs
® Tuesday - Design and general MQ solving techniques

® Key size optimization techniques
® Algorithms for solving the MQ problem

® Wednesday - Cryptanalysis
® MinRank
® Equivalent keys attacks
® Thursday - Cryptanalysis and provably secure designs
® Attacks on UOV
® Fiat-Shamir signatures |
[ ]

Friday - Provably secure designs
® Fiat-Shamir signatures Il
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® [F, — finite field of g elements,

® [F7" — vector space of vectors (u, u2, ..., un) over Fy

® [Fym — extension field of Fy of degree m

® Fy[xi,...,xn] — ring of polynomials over Fq in the variables xi, ..., xs

® polynomial ideal - subset of Fg[x1,. .., x,] closed under linear combination with polynomial
coefficients

® GL,(F,) — general linear group of degree n over Fy.

® x = (x1,...,Xn) — row vectors in [Fg, x| = (x, ... ,xn)T — column vectors in Fg
® p(x1,...,xn) = > «jxixj — quadratic form
1<i<j<n

® matrix form P = P 4+ P, where P; = ajj/2 over char # 2 or P;j = «j over char =2
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Multivariate cryptography

¢ Cryptosystems whose security is based on the MQ-problem over Fq

® MQ stands for Multivariate Quadratic
® Finding a solution to a system of m quadratic equations over a finite field in n
variables
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Multivariate cryptography

¢ Cryptosystems whose security is based on the MQ-problem over Fq

® MQ stands for Multivariate Quadratic

® Finding a solution to a system of m quadratic equations over a finite field in n
variables

® Decisional variant is NP-complete problem

® More general PoSSo problem for higher degree equations

4/26



Multivariate cryptography

® Symmetric (stream cipher QUAD) but mostly public key designs
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Multivariate cryptography

Symmetric (stream cipher QUAD) but mostly public key designs

Mostly signatures

Mostly ad-hoc designs, but there are also provably secure ones

Shaky history due to break and patch approach
® ETSI finalist SFLASH was broken

NIST submissions:
® LUQV, Rainbow, GeMSS - short signatures, big keys, ad-hoc
® all broken! GeMSS severely, Rainbow as finalist

® MQDSS - short keys, big signatures, provably secure

Additional NIST round ongoing

® many UOV variants! - UOV, MAYO, TUOV, PROV, VOX, etc.
® also some Fiat-Shamir signatures - MQOM, ALTEQ™, MEDS*

* - based on variants of the Isomorphism of Polynomials problem
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MQ crypto Prime Time

— MIA and C* [Patos]

Birational
F

Birational P jon [Sha0s]
[CSV83, Thess, CSVO7]

PMI [pin04], RSE(2)PKC [KS04]
RSSE(2)PKC [Ks05a]

Rainbow [Dsos] |

| RSE(2)PKC,RSSE(2)PKC [wePo4

P ot

Sflash [DFsso7]

Thomae 13

Interest seriously declines
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The MQ problem

Computational MQ problem

Find: (if any) a vector (uy, .

Given: m multivariate polynomials p1, p2, .

p1(u1, .
pz(U17 cee

pm(l_l1, e

.oy Pm € Fqlxa,.
.., up) € Fg such that

sup)= 0
sup)= 0
,up) =0

.., Xn] of degree 2
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The MQ problem

Computational MQ problem

Given: m multivariate polynomials p1, p2, ..., pm € Fq[x1, ..., xa] of degree 2
Find: (if any) a vector (u1,. .., u,) € Fy such that

p1(u1,...,un) = 0

pa(ur,...,up) = 0

Pm(u1,...,ux) = 0

How hard is it actually?

® Easy when m > number of monomials of degree 2

® linearize and solve as a system of linear equations
® hardest case n =~ m

® Complexity well understood for “random” systems (correct: systems without structure)
® Grobner bases, XL, Joux-Vitse algorithms
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MQ problem: numerical example

® Example parameters: n=m =3, F; =Fs
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MQ problem: numerical example

® Example parameters: n=m =3, F; =Fs

® Random system of polynomials F:

y1 =4xix1 + 3xix2 + 0x1x3 + xox2 + 2x0x3 + x3x3 + 0x1 + 2x2 + 2x3
Yo = x1x1 + 2x1x2 + x1x3 + 0x0x2 4+ 3x0x3 + 4x3x3 + 0x1 + 3x2 + 2x3
y3 = Oxix1 + x1x2 + 4xix3 + 3xox2 + 0x2ox3 + x3x3 + 4x1 + x2 + Ox3
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Yo = x1x1 + 2x1x2 + x1x3 + 0x0x2 4+ 3x0x3 + 4x3x3 + 0x1 + 3x2 + 2x3
y3 = Oxix1 + x1x2 + 4xix3 + 3xox2 + 0x2ox3 + x3x3 + 4x1 + x2 + Ox3

® ‘Secret’ input x = (1,4, 3)

yi=4-11+3-1-444.442.4.3+3.34+2.442.3
yo=1-142-1-441-3+3-4-3+4-3-3+3.44+2.3
y3=1-444.1.343.4.443.3+4-1+4
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MQ problem: numerical example

® Example parameters: n=m =3, F; =Fs

® Random system of polynomials F:

y1 =4xix1 + 3xix2 + 0x1x3 + xox2 + 2x0x3 + x3x3 + 0x1 + 2x2 + 2x3
Yo = x1x1 + 2x1x2 + x1x3 + 0x0x2 4+ 3x0x3 + 4x3x3 + 0x1 + 3x2 + 2x3
y3 = Oxix1 + x1x2 + 4xix3 + 3xox2 + 0x2ox3 + x3x3 + 4x1 + x2 + Ox3

® ‘Secret’ input x = (1,4, 3)

yi=4-1-1+3-1-4+4-442-4.3+3.3+4+2.442.3=79=4
yo=1-1+2-1-44+1-34+3-4-344-3-3+3-4+2.3=102=2
y3=1-4+4-1.34+3.4.443.34+4-1+4=81=1

® 'Public’ output y = (4,2,1)
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Multivariate signatures — the ad-hoc construction

® Start with a structured central map that is easily invertible

F:i(x1,...,%) € Fg — (fl(xl,...,X,,),...,fm(xl,...,x,,)) e Fy,
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Multivariate signatures — the ad-hoc construction

® Start with a structured central map that is easily invertible

F:i(x1,...,%) € Fg — (fl(xl,...,X,,),...,fm(xl,...,x,,)) e Fy,

Hide the structured central map, using two bijective linear maps S and T

The public key P : Fg — F¢' is then obtained as
P=ToFoS

and basically looks like P(x1,...,%n) = (p1(X1, ..., Xn)s -+, Pm(X1, - .-, Xn))
where ps(xi,...,x0) = 32 OZEJ-S)X:'XJ + 300, 8% 4 4 for some coefficients a,(.js), ) ) e F,

1<i<j<n
Fy P F7
q public key q
5| s
. private key "
Fq T Fq

Key generation
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Multivariate signatures — the ad-hoc construction

® To sign a message m,
® hash the message H(m)
® apply the inverses of the secret maps 7, F, S
o=8"1oF toT }(H(m))
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Multivariate signatures — the ad-hoc construction

® To sign a message m,

® hash the message H(m)
® apply the inverses of the secret maps 7, F, S
o=8"toF o T (H(m))

® To verify a signature o,
® evaluate the polynomials P at ¢ and

® check if it matches H(m)

B ublickey publlc key Fq Fa Ver|f|cat|on Fq
. prlvate key 7 . Slgnmg e
Fo——F= " Fg Fg

Key generation Signing/Verification
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The ad-hoc construction - Signature and key sizes

® Signature € Fj - hence only log g - n bits
® Private key - can be generated from seed - hence only store a small seed (ex. 256 bits)

® Public key typically can’t be compressed

. 1) ..
® m degree 2 homogeneous polynomials in n over € [F; - hence log q - (n;— > bits

® there are some optimization techniques we discuss later
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Families of ad-hoc multivariate signatures

® Mixed-field schemes

® Secret key defined over extension field, and transformed in the ground field
® C*, HFE variants including GeMSS
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Families of ad-hoc multivariate signatures

® Mixed-field schemes

® Secret key defined over extension field, and transformed in the ground field
® C*, HFE variants including GeMSS

® Single field schemes

® Defined over and all operations in a single field
® Qil and vinegar schemes (UOV, LUOV, MAYO, Rainbow)
® Step-wise triangular schemes (TTS, TTM, MQQ-sig, Rainbow)
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Mixed-field schemes




General principle of mixed-field schemes

e Central map F constructed in extension field Fgn as a univariate map F.
® (Fqr constructed as quotient ring Fq[X]/g(X) for irreducible g(X) of degree n)
® Then mapped bijectively to the ground field using ¢ : Fgn — Fg defined by:

(]3(2 u,-X,-) = (Ul, ey u,,)

for a basis (1,X...,x" ") € F. of Fgn over F,
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General principle of mixed-field schemes

e Central map F constructed in extension field Fgn as a univariate map F.
® (Fqr constructed as quotient ring Fq[X]/g(X) for irreducible g(X) of degree n)
® Then mapped bijectively to the ground field using ¢ : Fgn — Fg defined by:

(]3(2 u,-X,-) = (Ul, ey u,,)

for a basis (1,X...,x" ") € F. of Fgn over F,
® Public key P then obtained by masking over the ground field with S and T

P
n ) m
IF‘q IE‘q
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C* [Matsumoto and Imai '85]

® Central map over extension field extremely simple — permutation monomial of algebraic degree 2:
F(x)=x7+
where gcd(gf + 1,¢" — 1) = 1 (condition for bijectivity). Secret key is t.
® The inverse can be computed as
~-1
F (V)=Y"

where h is the multiplicative inverse of g* + 1 modulo g" — 1.
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C* [Matsumoto and Imai '85]

® Central map over extension field extremely simple — permutation monomial of algebraic degree 2:
~ t
F(X)=x9%

where gcd(gf + 1,¢" — 1) = 1 (condition for bijectivity). Secret key is t.
® The inverse can be computed as
~-1
F (Y)=Y"

where h is the multiplicative inverse of g* + 1 modulo g" — 1.

® Very easy to break! [Message recovery attack Patarin '95]
® input X and the output Y of the map connected as

Yiolxy = (x9H)d-lxy
t 2t
Xy? = X7y
® = bilinear relation between secret input X and known output Y

® Attack step 1: Collect many input-output pairs to form a bilinear system
® Attack step 2: In the bilinear system plug in Y, and solve for X
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C* modifications

® (C*~ scheme using the “minus’ modifier

® used in SFLASH - a signature scheme proposed by Patarin, Goubin and Courtois in 2001
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C* modifications

® (C*~ scheme using the “minus’ modifier
® used in SFLASH - a signature scheme proposed by Patarin, Goubin and Courtois in 2001

® SFLASH was selected in 2003 by the NESSIE European Consortium as one of the three
recommended public key signature schemes, and as the best known solution for low cost
smart cards

® |t was broken in 2007 by Dubois using a differential attack
® pFLASH - proposed in 2015

® projection modifier (project the input to smaller hyperplane)

® broken in 2021 - gygarden, Smith-Tone, Verbel

® uses attack by Tao, Petzoldt, Ding '20 that applies to virtually all HFE variants with
modifiers
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HFE (Hidden field equation) [Patarin '96]

Original HFE proposed by Patarin in '96 as a direct generalization of C*

Uses general quadratic polynomial (Dembowski-Ostrom polynomial) over Fgn

FX) = > axit 4 Y XYt
0<i,j<D 0< k<D
d+d¢d <D ¢“<D

Degree D must be bounded for efficient inversion (signing)

Inversion of polynomial done using Berlekamp's algorithm
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HFE (Hidden field equation) [Patarin '96]

Original HFE proposed by Patarin in '96 as a direct generalization of C*

Uses general quadratic polynomial (Dembowski-Ostrom polynomial) over Fgn

FX) = > axit 4 Y XYt
0<i,j<D 0< k<D
d+d¢d <D ¢“<D

Degree D must be bounded for efficient inversion (signing)

Inversion of polynomial done using Berlekamp's algorithm

The DO polynomial is not a bijection in general, so no guarantees for

® Existence of signatures (can be fixed by a diversifier)
® Unique decryption if used as an encryption scheme (can be fixed by adding some
disambiguation in the plaintext)
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HFE security

® Key recovery attacks
® MinRank over extension field [Kipnis and Shamir '99]
® MinRank over ground field [Bettale, Faugere, Perret '11]
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HFE security

® Key recovery attacks
® MinRank over extension field [Kipnis and Shamir '99]
® MinRank over ground field [Bettale, Faugere, Perret '11]

® Message recovery attacks
® Faugere solved HFE Challenge 1 (HFE over GF2, d = 96) in 2002
® System can be solved much faster than a random system
® Ding and Hodges prove that degree of regularity is connected to the degree D of the DO
polynomials
® Efficiency and security contradict each other
® Signing using Berlekamp is O(nD)
® Attacks O(n7'"°gs D)
® For g =2, D =512, attack is quite low
® Conclussion: HFE is not secure!

® Several fixes proposed

® HFEv- survived the longest (Quartz, GUI, GeMSS)
17/26



HFEv- and GeMSS (finalist in NIST standardization process)

® HFEv- = HFE + vinegar modification + minus modification
® vinegar mod. adds v extra vinegar variables
® minus mod. removes a polynomials from the public key
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HFEv- and GeMSS (finalist in NIST standardization process)

HFEv- = HFE + vinegar modification + minus modification

® vinegar mod. adds v extra vinegar variables

® minus mod. removes a polynomials from the public key

Central map is: F(X) : Fg X Fgn — Fgn

= i i k
F(X) = Z a,-jXq+q]+ Z br(vi,va, ..., v)XT +c(vi, v, ...

IN

0<i,j<D 0< k<D
qd+¢ <D k<D

ININA
Q

Signing;:

® Compute w = H(m) € Fg™*

® Compute u=7 *(w) € F7 and U= ¢ '(u) € Fen
Choose random values for the vinegar variables vy, ...

Solve F,(Y) = U over Fgn via Berlekamp's algorithm
Compute y = ¢(Y) € Fy
Signature is o = S} (y||w1]|...||w)

Verification works as usual

aVV

7VV)

18/26



Security of GeMSS (finalist in NIST standardization process)

® Just an HFEv- scheme

® Several iteration of MinRank:
® Min-Q-rank attack

o n+log,D+a+v+1 w)
log,D+a+v+1

® MinRank style attack [Tao, Petzoldt, Ding '21]

o n—|—|oqu—|—v+1 w)
Ioqu—i—v—l—l

® Completely independent of a
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Security of GeMSS (finalist in NIST standardization process)

® Just an HFEv- scheme

® Several iteration of MinRank:
® Min-Q-rank attack

o n+log,D+a+v+1 w)
log,D+a+v+1

® MinRank style attack [Tao, Petzoldt, Ding '21]

o n—|—|oqu—|—v+1 w)
Ioqu—i—v—l—l

® Completely independent of a
® Not feasible anymore to create an efficient scheme
® GeMSS completely broken!
® NIST security level lll should be: D > 2%1
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Single field schemes




Layered schemes

® The central map defined by several layers, in each layer several new variables introduced

® In matrix form, the central (symmetric) matrices are:

fi Ta+1 n—d-+1
) Td+2 —d+2
fa by fn
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Layered schemes

® The central map defined by several layers, in each layer several new variables introduced

® In matrix form, the central (symmetric) matrices are:

® The structure can be disguised
(TTS, EnTTS, MQQ-sig)
7 e —— ® Very susceptible to rank defect
attacks!
® And these attacks only get better :)
h fa+2 n—d-+2
fa P fn
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Unbalanced Oil and Vinegar (UOV)

® Proposed by Kipnis and Patarin '99 as amendment of the Oil and Vinegar scheme by Patarin
(broken by Kipnis and Shamir '98)
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Unbalanced Oil and Vinegar (UOV)

® Proposed by Kipnis and Patarin '99 as amendment of the Oil and Vinegar scheme by Patarin
(broken by Kipnis and Shamir '98)
® The central map F : F" — F° is F(x1,...,xn) = (A(x1,-- -, Xn), -, fo(X1,...,Xn)) where

FO) = D i+ 5 xix

ijev %
i<j j€o
(s)
ij
e V={1,2,...,v} - index set of vinegar vars, O = {v+1,v+2,...,n} - index set of oil vars

where «;;’ - coefficients of the vinegar-vinegar, the ,B,g-s) of the oil-vinegar monomials
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Unbalanced Oil and Vinegar (UOV)

® Proposed by Kipnis and Patarin '99 as amendment of the Oil and Vinegar scheme by Patarin
(broken by Kipnis and Shamir '98)
® The central map F : F" — F° is F(x1,...,xn) = (A(x1,-- -, Xn), -, fo(X1,...,Xn)) where

FO) = D i+ 5 xix

ijeEV %
i<j j€o

where afj) - coefficients of the vinegar-vinegar, the ,B,g-s) of the oil-vinegar monomials

e V={1,2,...,v} - index set of vinegar vars, O = {v+1,v+2,...,n} - index set of oil vars
® |n matrix form, the central matrices are
Ty «+- Ty -+ Ty
Lot

: } vinegar variables

Ty

: } oil variables

Tn

21/26



Unbalanced Oil and Vinegar (UOV)

® Proposed by Kipnis and Patarin '99 as amendment of the Oil and Vinegar scheme by Patarin
(broken by Kipnis and Shamir '98)
® The central map F : F" — F° is F(x1,...,xn) = (A(x1,-- -, Xn), -, fo(X1,...,Xn)) where

FO) = D i+ 5 xix

ijev %
i<j j€o
(s)
ij
e V={1,2,...,v} - index set of vinegar vars, O = {v+1,v+2,...,n} - index set of oil vars

® |n matrix form, the central matrices are
Ty «+- Ty -+ Ty

where «;;’ - coefficients of the vinegar-vinegar, the ,B,g-s) of the oil-vinegar monomials

1
: } vinegar variables

Ty

: } oil variables

Tn

® No 7 map - not necessary and does not add to the security! Why?
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UOV baby example

Central map F : F4 — F3
Vinegar variables x1, x> & Oil variables x3, x4

fi(x1, X2, X3, Xa) = X152 + X1X3 + XoX4 + X3

fo(x1, X2, X3, Xa) = X1 + XoX3 + XoXa4 + X3

22/26



UOV baby example

Central map F : F4 — F3
Vinegar variables x1, x> & QOil variables x3, xa

fi(x1, X2, X3, Xa) = x1%2 + X1X3 + XoXa + X3

fo(x1, X2, X3, Xa) = X1Xa + XoX3 + XoXa + X3

22/26



UOV baby example

Central map F : F4 — F3
Vinegar variables x1, x> & QOil variables x3, xa
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O = O O
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Central map F : F4 — F3
Vinegar variables x1, x> & QOil variables x3, xa

fi(x1, X2, X3, Xa) = x1%2 + X1X3 + XoXa + X3

fo(x1, X2, X3, Xa) = X1Xa + XoX3 + XoXa + X3

Linear S =

= O
o O = O
o = O O

1
1
1
1

o

Public map P = FoS : F — F3

pi(x1, %2, x3,X) = x1x2 + x1x3 + x1xa + XoXa + Xa

pa(x1, %2, X3, %) = x1x3 + XoXa + x3x4 + X1 + Xa

All monomials appear! Looks “random”
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UOV baby example

Central map F : F3 — F3 To sign a message m,

Vinegar variables x1, x> & Oil variables x3, xs ® hash the message (hi, h) = H(m)

® fix randomly the vinegar variables
fi(x1, X2, X3, Xa) = x1%2 + X1X3 + XoXa + X3 M g€

fa(x1, X2, X3, Xa) = X1Xa + X2X3 + XoX4 + X3 (o, 00, x3,x3) = +oxs+ oxa+ xs
110 0 fa(c, o, x3,%a) = Cixa + Coxz + Coxa + x3
1 1
Linear § = 0 0
1 1 0 1
0 1 0 O

Public map P = FoS : F — F3
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Vinegar variables x1, x> & Oil variables x3, xs ® hash the message (hi, h) = H(m)

® fix randomly the vinegar variables
fi(x1, X2, X3, Xa) = x1%2 + X1X3 + XoXa + X3 M g€

f2(X17X27X3’x4):x1x4+x2x3+X2X4+X3 fl( R ,X3,X4): + Cixzs+ oxa + x3
110 0 fa(c, o, x3,%a) = Cixa + Coxz + Coxa + x3
. 0 1 1 0
Linear § = 110 1 ® Solve the linear system
0 1 0 O

+ox3+ oxa+x3=Mh
Public map P = FoS : F4 — F2 !
Xs + oox3+ oxa+x3 = h
pi(x1, %2, x3,X) = x1x2 + x1x3 + x1xa + XoXa + Xa

pa(x1, %2, X3, %) = x1x3 + XoXa + x3x4 + X1 + Xa
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UOV baby example

Central map F : F4 — F3
Vinegar variables x1, x> & QOil variables x3, xa

fi(x1, X2, X3, Xa) = x1%2 + X1X3 + XoXa + X3

fo(x1, X2, X3, Xa) = X1Xa + XoX3 + XoXa + X3

1
Linear S = 0
1

== e e
o O = O
o = O O

0
Public map P = FoS : F — F3

pi(x1, %2, x3,X) = x1x2 + x1x3 + x1xa + XoXa + Xa

pa(x1, %2, X3, %) = x1x3 + XoXa + x3x4 + X1 + Xa

All monomials appear! Looks “random”

To sign a message m,

® hash the message (h1, h2) = H(m)

® fix randomly the vinegar variables

fl( ) ,X3,X4)= + X3+ CoXa + X3

f2( ) ,X37X4)= X4 + X3 + CoXq + X3

® Solve the linear system

+ cix3 + oxa+x3 = h
Xs + oox3+ oxa+x3 = h

® The solution is (c3, ca) (*-repeat if no
solution)

® The signature is
o= (51., 52, 83, 54) = 871(C17 C, C3, C4)
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Multivariate signatures — Rainbow

® |n UQV, it should hold v = 30, otherwise not secure
® big overhead in size of keys and signature
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® big overhead in size of keys and signature

Rainbow - proposed by Ding & Schmidt '04 as a more efficient variant of UOV
Rainbow = Layered UOV (typically, two layers of UOV)
The central map F : F" — F""" is ]—'(xl, cooyXn) = (f1(Xt, ooy Xn),y - ooy fa(x1, - .., Xn)) wWhere

FO(x) = Z i xix; + Zﬂu xixj, for s € Oy

ijeEVy i€Vy
i<j Jj€0,
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Multivariate signatures — Rainbow

® |n UQV, it should hold v = 30, otherwise not secure

® big overhead in size of keys and signature

® Rainbow - proposed by Ding & Schmidt '04 as a more efficient variant of UOV
® Rainbow = Layered UOV (typically, two layers of UOV)

® The central map F: F" — F""" is ]—'(xl, cooyXn) = (f1(Xt, ooy Xn),y - ooy fa(x1, - .., Xn)) wWhere
FO(x) = Z i xix; + Z B xixj, for se O
ijEVy i€V
i<j Jj€Og

L4 Oo:@, V1:{1,2,...,V1}, 01={V1—|—1,...,V2}, Vz:{l,...,VQ}, OQZ{VQ—F].,...,H}
® In matrix form, for parameters vi = |Vi| = 18,01 = |O1] = 12,0, = |0z| = 12

F18+12-+124 F18+12-+124

and
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Security of UOV

® |n UQV, it should hold v =~ 30, otherwise not secure

® v =0 - (0O& V) broken using invariant subspace attack
® v >> 0 - easy as a function of n
® 20 < v < 30 - sweet spot
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Security of UOV

® |n UQV, it should hold v ~ 30, otherwise not secure
® v =0 - (0O& V) broken using invariant subspace attack
® v >> 0 - easy as a function of n
® 20 < v < 30 - sweet spot
® Cryptanalytical techniques (= 15 years old)
® |nvariant subspace attack
® Direct attack
® Reconciliation attack
® Parameters for 128 bits security based on these attacks
® g =256,n =103, m = 44, private key 194, 7KB, public key 235,6KB (plain UOV)
® g =256,n = 103, m = 44, private key 116, 8KB, public key 43,6 KB (UOV using eq. keys)
® Beullens in 2020 - reduced the security to 95 bits!

Current NIST level 1 security parameters (143 bits)
® g=16,n= 160, m = 64, public key 66,6 KB (with compression)
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Security of Rainbow

® All attacks from UQV plus more!

® Specific cryptanalytical techniques (= 10 years old)

® MinRank and HighRank
® Rainbow band separation attack

® NIST finalist, security believed to be well understood

® Submitted NIST level 1 security parameters

® (GF(16),32,32,32), g = 16, n = 96, m = 64, private key 97.9KB, public key 148.5KB,
signature 64 bytes

® Beullens in 2020 - reduced the security to 123 bits!
® Beullens in 2022 - breaks practically this parameters set (61 bits of security)

® Can be fixed, but not competitive to UOV any more!
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Today:

® Multivariate signatures - classic designs
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Today:
® Multivariate signatures - classic designs
Tomorrow:

® Key size optimization techniques

® Solving the MQ problem
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