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Schedulle (tentative)

® Monday - Designs
® General
® (Classic designs
® Tuesday - Design and general MQ solving techniques

® Public key optimization techniques
® Algorithms for solving the MQ problem

® Wednesday - Cryptanalysis
® MinRank
® Equivalent keys attacks
® Thursday - Cryptanalysis and provably secure designs
® Attacks on UOV
® Fiat-Shamir signatures |
[ ]

Friday - Provably secure designs
® Fiat-Shamir signatures Il
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® [F, — finite field of g elements,

® [F7" — vector space of vectors (u, u2, ..., un) over Fy

® [Fym — extension field of Fy of degree m

® Fy[xi,...,xn] — ring of polynomials over Fq in the variables xi, ..., xs

® polynomial ideal - subset of Fg[x1,. .., x,] closed under linear combination with polynomial
coefficients

® GL,(F,) — general linear group of degree n over Fy.

® x=(xi,... ,X,,)T — column vectors in Fyg, x| = (x1,...,Xn) — row vectors in Fg
® p(x1,...,xn) = > «jxixj — quadratic form
1<i<j<n

® matrix form P = P 4+ P, where P; = ajj/2 over char # 2 or P;j = «j over char =2
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Public key optimization
techniques



Equivalent keys

® et (F,S,T) be a private key for the public key P of a multivariate scheme
® (F,S,T)~ (F',S',T') (the keys are equivalent) if and only if:

(TofoS:T/o}—'oS/)

and (F',S’, T') can be used as a private key of (F,S, T).
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Equivalent keys

® et (F,S,T) be a private key for the public key P of a multivariate scheme
® (F,S,T)~ (F',S',T') (the keys are equivalent) if and only if:

(TofoS:T/o}—'oS/)

and (F',S’, T') can be used as a private key of (F,S, T).

® How to find an equivalent key?

P = ToFoS &

P = ToX loXoFoQoQlos &
—— ——— ———

P = T o F o &

® we try to find the matrices X and €.
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Equivalent keys

® |t is actually a cryptanalytical technique, used quite often
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Equivalent keys

® |t is actually a cryptanalytical technique, used quite often

® But it can be used for reduction of the size of the public key :)
® Recall that the public keys are huge
® For example of UOV Level 1 it is 412KB
® with the optimization it is 66KB
® This optimization introduces weaknesses as we will see in the next lectures ...

® if not used properly
® for side-channel analysis
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Equivalent keys for UOV

e Central map: FO(x,...,x,) = 2 O{I(-J-S)X,'Xj + > ijs)xixj
ijeV,i<j ievjeo
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F(S) F(S)
e 7() in an upper triangular matrix form: F® = (1) (2)

® D = FoS also in matrix form:

P& =sTF®)s =  (we are looking for an equivalent key)
= s'T@H'a'FYq s
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Equivalent keys for UOV

® Central map: ]-'(S)(xl, ..

')X"):

ILJEV,i<]

> > Bxix

aPxix; +
i€eV,jeo

F(S) F(S)
e 7() in an upper triangular matrix form: F® = [ ' ! 2

® D = FoS also in matrix form:

P =STFs

0 0

(we are looking for an equivalent key)
sT@hH" Q" FP9 s

(ST(Q’I)T) o
—_—

(
[

Iy
0

I

0

(e7F92) o

&9
T —N—

Sl w; UJ; F(ls) F(25) w1 0 |v S1

Im 0w 0 0 w3 ws 0 In

s\ (FO PO\ (I, s
o 01 é (‘)’ L - An equivalent key!
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Key generation for UOV using equivalent keys

® From the key equation P = F oS in matrix form: P*) = STF)s:

PP PYY (VO (R OBV (1 s
o P9 PP lsT 1/lo o)lo 1
(R R R

0 Upper (S{F7S; +S[FY)
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Key generation for UOV using equivalent keys

® Again the key equation

PP PON (RO (ED 4TS R
0 P‘(‘s) 0 Upper (SIF§5)51+SIF§)) '

* Note immediatelly that we must have F{*
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Key generation for UOV using equivalent keys

® Again the key equation

(5 5)=(

Note immediatelly that we must have F{*

P
0

Py
Py

F

0 Upper (S Fg

The new key generation (using equivalent keys)

(FF + F )8, + FY
s, + STFY)

) |

® Expands from secret seed: S; and from public seed: P(ls)7 Pgs)
® Calculate
ng) Pgs) and
F) = PY—(PY +PPT)s: and
PY) = Upper (SiP{S: +S/FY)

for UOV parameters, more than 5/6 reduction of public key

Only Pff) needs to be stored as non-compressible public key
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Further optimizations of UOV

LUOV [Beullens et al. '17]

e Lifting of coefficients 4+ key generation with equivalent keys

® Coefficient live in ground field, but polynomials and solutions live in extension field
® Significant reduction in key sizes

NIST Second round candidate

Unfortunately, proven insecure by Ding et al.’19
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MAYO [Beullens '21]

MAYO [Beullens '21]

® Submitted to NIST in additional signature round

® Currently, one of the most promising candidates!

e UQV with small oil space + key generation with equivalent keys

® "Whipping' technique to expand the oil space so that signing is possible

® Various approaches for whipping possible
® Not yet well understood? More research necessary
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The MQ problem

Computational MQ problem

Find: (if any) a vector (uy, .

Given: m multivariate polynomials p1, p2, .

p1(u1, .
pz(U17 cee

pm(l_l1, e

.oy Pm € Fqlxa,.
.., up) € Fg such that

sup)= 0
sup)= 0
,up) =0

.., Xn] of degree 2
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Given: m multivariate polynomials p1, p2, ..., pm € Fq[x1, ..., xa] of degree 2
Find: (if any) a vector (u1,. .., u,) € Fy such that

p1(u1,...,un) = 0

pa(ur,...,up) = 0

Pm(u1,...,ux) = 0

How hard is it actually?

® Easy when m > number of monomials of degree 2

® linearize and solve as a system of linear equations
® hardest case n =~ m

® Complexity well understood for “random” systems (correct: systems without structure)
® Grobner bases, XL, Joux-Vitse algorithms
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Security of MQ cryptosystems

® |f the MQ problem can be solved, MQ cryptosystems can be broken
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Security of MQ cryptosystems

® |f the MQ problem can be solved, MQ cryptosystems can be broken

® not the right direction of reduction, does not say much about the security. . .

General MQ system solvers provide nevertheless crude upper security bound

® Generic algebraic system solvers

® Grébner bases solvers - F4/F5 algorithms
® XL algorithms
® Joux-Vitse algorithm

Probabilistic algorithms

® | okshtanov et al.
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General principle of algebraic system solvers

® \We want to solve

pi(xi, ..., xn) = 0
Pm(Xty. ..y xa) = 0

over the field Fy,
® For simplicity, suppose there is a unique solution (u1, U2, ..., Us).
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generates the same space (the same ideal) as the polynomials in the above system

® = (x1 — U1, Xo — Up,...,Xn — Up) is a basis of the ideal

® = There exist polynomials h;,i € {1,...,n} such that x; — u; = Y7, hip;

In a nutshell, the goal of an algebraic solver is to find a “nice” basis of the given ideal

® by finding the right linear combinations " | hip;

® main tool is linear algebra
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General principle of algebraic system solvers

® How to find all these linear combinations?
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General principle of algebraic system solvers

® How to find all these linear combinations?
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X6X7 X8 x2 x3 1
p1 1 1 0 0
P2 0 1 10
X1p1 1 1 0 1
X1p2 0 1 00
X3 p1 0 0 1 0

® Try to Gauss-reduce the matrix
® |f it does not reduce to the “nice” form, increase D

® The complexity is determined by the size of the matrix and the lowest D that works
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General principle of algebraic system solvers

® Of course, the best algorithms are more sophisticated. . .
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® Of course, the best algorithms are more sophisticated. . .

® Some techniques include:

® don't start over from scratch, but reuse some useful results from the previous interaction
® don't add rows that are linearly dependent

® estimate in advance d,cg, and Gauss eliminate only Macaulay matrix of this degree
® benefits: no operations are performed twice + sparse linear algebra can be used
® choose the best ordering of monomials
® enumerate (brute-force) a few variables, and solve all systems of fewer variables
® State of the art

® Grobner bases solvers - F4/F5 algorithm, XL algorithm (big fields)
® Joux-Vitse algorithm (F2) - we zoom into this one
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Grobner bases algorithms

® First studied by Bruno Buchberger in the '60-es
® |ater improved by Faugére et al. (F4, F5) in '04
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Grobner bases algorithms

® First studied by Bruno Buchberger in the '60-es

® |ater improved by Faugére et al. (F4, F5) in '04

® |ooks for a nice basis of the ideal generated by the polynomial system
® Considers a specific monomial ordering - best for grevlex ordering

® Complexity for semi-regular systems (“random looking™)

® F5 does not generate “rows” that are linearly dependent (“no reduction to zero”)

N+ dpeg — 1\
o(("5))

® Hybrid F5 algorithm [Bettale, Faugere, and Perret '09] - fix k variables for some optimal k

o (1744 1)")
k dreg
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The XL algorithm

® Proposed by Courtois et al. '00
® Several variants - FXL (fixing variables), MutantXL
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® Main steps of the algorithm:
@ eXtend - form Macaulay matrix of dergee D
@® Linearize - Apply Gaussian Elimination on the extended system to generate a univariate
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@ Repeat - Substitute the solution of p into the system and continue with the simplified

3 n+ dxr, > /n
dxr, d

system

® Complexity:
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The Joux-Vitse algorithm

® Proposed by Joux and Vitse in 2017

® Very similar to FXL but with a very clever approach to fixing
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The Joux-Vitse algorithm

® Proposed by Joux and Vitse in 2017

® Very similar to FXL but with a very clever approach to fixing

® Significantly improves over other algorithms in the practical regime

® Assymptotically it is actually the same as other Grobner basis algorithms
® Currently the best approach for small fields

® For [F, beats enumeration at n = 37, other algorithms around n = 200

16384 . . . — 1.05 — . - . - - : : T
libFes —— \ Joux-Vitse
1096 | Joux-Vitse —— - FXL/BooleanSolve
[ S FXL/BooleanSolve limit 1
1024 +

0.95

0.9

0.85 F

08

Number of Variables

38 40 42 44

100

150

200

250 300 350 400

Number of Variables

450
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An example

Consider the following system:

X1X2 + X1X3 + XoX3 + X1 + X3 =
X1X3 + Xox3 +X3x4 + X2+ X3+ X4 =
XoX4 + X3xa4 +x1 +x3 + 1 =
x1x2 +x1xa +x0x3+x3+xa+1 =
XoX3 + X3Xa + X1 + X3 + Xa =

O O O O O

The Macaulay matrix of degree 2 (for lexicographic ordering) is

X1X2 X1X3 X1Xa X1 XoX3 XoXa X2 X3xa X3 Xg 1
pp/1 1 0 1 1 0 0 0 1 0 1 1101 100 0 1 01
p|f O 1 0 0 1 0 1 1 1 1 0 010 01011110
m| OO0OOT1O0T1O0T1T1O0T1]|~0O0O0OT1O0T1O0T11O01
ps{ 1 01 01 0 0 O0 1 1 1 0 0111011100
ps\O0O O O 1 1 0 0 1 1 1 O 0 00011 0 0011
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XoX4 + X3xa4 +x1 +x3 + 1 =
x1x2 +x1xa +x0x3+x3+xa+1 =
XoX3 + X3Xa + X1 + X3 + Xa =

O O O O O

The Macaulay matrix of degree 2 (for lexicographic ordering) is

X1X2 X1X3 X1Xa X1 XoX3 XoXa X2 X3xa X3 Xg 1
pp/1 1 0 1 1 0 0 0 1 0 1 1101 100 0 1 01
p|f O 1 0 0 1 0 1 1 1 1 0 010 01011110
m| OO0OOT1O0T1O0T1T1O0T1]|~0O0O0OT1O0T1O0T11O01
ps{ 1 01 01 0 0 O0 1 1 1 0 0111011100
ps\O0O O O 1 1 0 0 1 1 1 O 0 00011 0 0011

Last equation is: x2x3 + xoxa + xa + 1 = 0 - we removed one variable (but this is not enough)
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An example

® The above matrix had (3) +4 + 1 = 11 columns and 5 rows

® If we make the degree 3 Macaulay matrix we will have (3) + (3) + 4 + 1 = 15 columns and
4.5+5 =25 rows

® Gauss elimination will certainly give us a solution since we have an overdetermined system
® Downside - we needed to make a bigger matrix

® For example for n = m = 20 we get 1351 columns and 400 rows - already a huge matrix, but
unfortunatelly can't be echelonized to give us a unique solution.
® We need an even bigger matrix of degree 4
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An example

® The above matrix had (3) +4 + 1 = 11 columns and 5 rows

® If we make the degree 3 Macaulay matrix we will have (3) + (3) + 4 + 1 = 15 columns and
4.5+5 =25 rows

® Gauss elimination will certainly give us a solution since we have an overdetermined system

® Downside - we needed to make a bigger matrix

® For example for n = m = 20 we get 1351 columns and 400 rows - already a huge matrix, but
unfortunatelly can't be echelonized to give us a unique solution.
® We need an even bigger matrix of degree 4

® In general, we need a big enough degree D to get more (independent) rows than columns
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Towards analysis of algebraic solvers

® Let Tp = ("°) - the number of monomials of degree at most D
® Np = Tp - columns in Macaulay matrix
® Rp =mTp_s - rows in Macaulay matrix

® Previous example suggests we need D such that: RD > /VD
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Towards analysis of algebraic solvers

® Let Tp = ("°) - the number of monomials of degree at most D
® Np = Tp - columns in Macaulay matrix

® Rp =mTp_s - rows in Macaulay matrix

® Previous example suggests we need D such that: RD > /VD

® Sort of ...What if some rows are linearly dependent?
® Are there always such dependencies?
® How to find them and count them?
® These dependencies/relations are called “syzygies”
® |n general they are hard to find for a given system, unless there is no hidden structure, i.e. the
system is semi-regular
® Semi-regular overdetermined systems - no other syzigies but the trivial ones fif; — fjfi = 0 exist

® \We need to remove the syzigies
® We can Gauss-reduce the Macaulay matrix as soon as the dimension of the row space is
larger than Np
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Towards analysis of algebraic solvers

We can use generating functions to analyze this.

® Let [tP] denote the coefficient in front of t°
o Tp= [tD]W - the number of monomials of degree at most D

® Np = Tp - columns in Macaulay matrix

= [t“D]f,ﬁ)1 - independent rows in Macaulay matrix

® Now, condition for full rank Np of degree D Macaulay matrix becomes:
[t°(To — Ip) <0, i.e.
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Towards analysis of algebraic solvers

We can use generating functions to analyze this.

® Let [tP] denote the coefficient in front of t°

® Tp= [tD]W - the number of monomials of degree at most D
® Np = Tp - columns in Macaulay matrix

°* Ip= [t“D]f,ﬁ)1 - independent rows in Macaulay matrix

® Now, condition for full rank Np of degree D Macaulay matrix becomes:
[t°(To — Ip) <0, i.e.

® Hence, we need to calculate the smallest D that satisfies this condition and use degree D
Macaulay matrix to solve the system
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Back to our example

The Macaulay matrix of degree 2 (for lexicographic ordering) is

X1X2 X1X3 X1Xa X1 X2X3 XoX4 X2 X3Xa X3 Xa 1
p/1 1 0 1 1 0 0 0 1 0 1
p| 01 0 0 1 0 1 1 1 10
ps] 0001 0101 10 1
p| 1 01 01000111
ps\0 O O 1 1 0 0 1 1 1 O

® Call the columns x1x2, x1x3 and X2x3 - matrix M’

® |f we remove M’, the rest is bilinear in x1, x2, x3 and xz
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Back to our example

The Macaulay matrix of degree 2 (for lexicographic ordering) is

X1X2 X1X3 X1Xa X| X2X3 XoXg X2 X3X4 X3 xg 1
pp/1 1 0 1 1 000 1 0 1
[0 1001011110
ps] 0001 0101 10 1
psl 1 01 01 000 1 1 1
ps\0 0 0 1 1 0 0 1 1 1 0

® Call the columns x1x2, x1x3 and X2x3 - matrix M’
® |f we remove M’, the rest is bilinear in x1, x2, x3 and xz

® |f we fix x4 we obtain a linear system in xi, x2, X3
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Back to our example

The Macaulay matrix of degree 2 (for lexicographic ordering) is

X1X2 X1X3 X1Xa X1 X2X3 XoX4 X2 X3Xa X3 Xa 1
p/1 1 0 1 1 0 0 0 1 0 1
p| 01 0 0 1 0 1 1 1 10
ps] 0001 0101 10 1
p| 1 01 01000111
ps\0 O O 1 1 0 0 1 1 1 O

® Call the columns x1x2, x1x3 and X2x3 - matrix M’
® |f we remove M’, the rest is bilinear in x1, x2, x3 and xz
® |f we fix x4 we obtain a linear system in xi, x2, X3
® Hence, if we find at least 3 vectors in the kernel of the matrix M’ we can use these

@ to trasform the Macaulay matrix to one that has M’ removed and has at least 3 rows

@® to enumerate over all values for x4

© to solve a linear system in x1, x2, x3

These are basically the steps of the Joux-Vitse algorithm!
23 /24



The Joux-Vitse algorithm - informal description

For appropriately chosen degree D Macaulay matrix M:
@ Take M’ to be the matrix of columns of M that correspond to monomials of deg > 1 in the first
k variables
@® Find k independent vectors in the kernel of M’
© Multiply these vectors by M to obtain a matrix M’

O For each possible value of the last n — k variables form a linear system from M’. If it has a
solution, output it as the solution to the given system
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