
Multivariate cryptography –

Optimizations and the MQ problem

SLMath summer school:

Introduction to Quantum-Safe Cryptography (IBM Zurich)

Simona Samardjiska

July, 2024

Institute for Computing and Information Sciences

Radboud University

1 / 24

Schedulle (tentative)

• Monday - Designs

• General
• Classic designs

• Tuesday - Design and general MQ solving techniques

• Public key optimization techniques
• Algorithms for solving the MQ problem

• Wednesday - Cryptanalysis

• MinRank
• Equivalent keys attacks

• Thursday - Cryptanalysis and provably secure designs

• Attacks on UOV
• Fiat-Shamir signatures I

• Friday - Provably secure designs

• Fiat-Shamir signatures II

2 / 24

Notations

• Fq – finite field of q elements,

• Fm
q – vector space of vectors (u1, u2, . . . , um) over Fq

• Fqm – extension field of Fq of degree m

• Fq[x1, . . . , xn] – ring of polynomials over Fq in the variables x1, . . . , xn

• polynomial ideal - subset of Fq[x1, . . . , xn] closed under linear combination with polynomial

coefficients

• GLn(Fq) – general linear group of degree n over Fq.

• x = (x1, . . . , xn)
⊤ – column vectors in Fn

q, x
⊤ = (x1, . . . , xn) – row vectors in Fn

q

• p(x1, . . . , xn) =
∑

1≤i≤j≤n

αijxixj – quadratic form

• matrix form P̄ = P+ P⊤, where Pij = αij/2 over char ̸= 2 or Pij = αij over char = 2

3 / 24

Public key optimization

techniques

Equivalent keys

• Let (F ,S,T) be a private key for the public key P of a multivariate scheme

• (F ,S,T) ≃ (F ′,S′,T′) (the keys are equivalent) if and only if:(
T ◦ F ◦ S = T′ ◦ F ′ ◦ S′)

and (F ′,S′,T′) can be used as a private key of (F ,S,T).

• How to find an equivalent key?

P = T ◦ F ◦ S ⇔

P = T ◦ Σ−1︸ ︷︷ ︸ ◦Σ ◦ F ◦ Ω︸ ︷︷ ︸ ◦Ω−1 ◦ S︸ ︷︷ ︸ ⇔

P = T ′ ◦ F ′ ◦ S ′

• we try to find the matrices Σ and Ω.

4 / 24

Equivalent keys

• Let (F ,S,T) be a private key for the public key P of a multivariate scheme

• (F ,S,T) ≃ (F ′,S′,T′) (the keys are equivalent) if and only if:(
T ◦ F ◦ S = T′ ◦ F ′ ◦ S′)

and (F ′,S′,T′) can be used as a private key of (F ,S,T).

• How to find an equivalent key?

P = T ◦ F ◦ S ⇔

P = T ◦ Σ−1︸ ︷︷ ︸ ◦Σ ◦ F ◦ Ω︸ ︷︷ ︸ ◦Ω−1 ◦ S︸ ︷︷ ︸ ⇔

P = T ′ ◦ F ′ ◦ S ′

• we try to find the matrices Σ and Ω.

4 / 24

Equivalent keys

• It is actually a cryptanalytical technique, used quite often

• But it can be used for reduction of the size of the public key :)

• Recall that the public keys are huge
• For example of UOV Level 1 it is 412KB
• with the optimization it is 66KB

• This optimization introduces weaknesses as we will see in the next lectures . . .

• if not used properly
• for side-channel analysis

5 / 24

Equivalent keys

• It is actually a cryptanalytical technique, used quite often

• But it can be used for reduction of the size of the public key :)

• Recall that the public keys are huge
• For example of UOV Level 1 it is 412KB
• with the optimization it is 66KB

• This optimization introduces weaknesses as we will see in the next lectures . . .

• if not used properly
• for side-channel analysis

5 / 24

Equivalent keys

• It is actually a cryptanalytical technique, used quite often

• But it can be used for reduction of the size of the public key :)

• Recall that the public keys are huge
• For example of UOV Level 1 it is 412KB
• with the optimization it is 66KB

• This optimization introduces weaknesses as we will see in the next lectures . . .

• if not used properly
• for side-channel analysis

5 / 24

Equivalent keys for UOV

• Central map: F (s)(x1, . . . , xn) =
∑

i,j∈V ,i⩽j

α
(s)
ij xixj +

∑
i∈V ,j∈O

β
(s)
ij xixj

• F (s) in an upper triangular matrix form: F(s) =

(
F(s)
1 F(s)

2

0 0

)
• P = F ◦S also in matrix form:

P(s) = S⊤F(s)S = (we are looking for an equivalent key)

= S⊤(Ω−1)⊤ Ω⊤F(s)Ω Ω−1S

=
(
S⊤(Ω−1)⊤

)
◦

(
Ω⊤F(s)Ω

)
◦

(
Ω−1S

)

=

︷ ︸︸ ︷(
Iv S1

0 Im

)⊤
︷ ︸︸ ︷(
ω⊤
1 ω⊤

3

0 ω⊤
4

)(
F(s)
1 F(s)

2

0 0

)(
ω1 0

ω3 ω4

)︷ ︸︸ ︷(
Iv S1

0 Im

)

=

(
Iv S1

0 Im

)⊤(
F′(s)

1 F′(s)
2

0 0

)(
Iv S1

0 Im

)
- An equivalent key!

6 / 24

Equivalent keys for UOV

• Central map: F (s)(x1, . . . , xn) =
∑

i,j∈V ,i⩽j

α
(s)
ij xixj +

∑
i∈V ,j∈O

β
(s)
ij xixj

• F (s) in an upper triangular matrix form: F(s) =

(
F(s)
1 F(s)

2

0 0

)
• P = F ◦S also in matrix form:

P(s) = S⊤F(s)S = (we are looking for an equivalent key)

= S⊤(Ω−1)⊤ Ω⊤F(s)Ω Ω−1S

=
(
S⊤(Ω−1)⊤

)
◦

(
Ω⊤F(s)Ω

)
◦

(
Ω−1S

)

=

︷ ︸︸ ︷(
Iv S1

0 Im

)⊤
︷ ︸︸ ︷(
ω⊤
1 ω⊤

3

0 ω⊤
4

)(
F(s)
1 F(s)

2

0 0

)(
ω1 0

ω3 ω4

)︷ ︸︸ ︷(
Iv S1

0 Im

)

=

(
Iv S1

0 Im

)⊤(
F′(s)

1 F′(s)
2

0 0

)(
Iv S1

0 Im

)
- An equivalent key!

6 / 24

Equivalent keys for UOV

• Central map: F (s)(x1, . . . , xn) =
∑

i,j∈V ,i⩽j

α
(s)
ij xixj +

∑
i∈V ,j∈O

β
(s)
ij xixj

• F (s) in an upper triangular matrix form: F(s) =

(
F(s)
1 F(s)

2

0 0

)
• P = F ◦S also in matrix form:

P(s) = S⊤F(s)S = (we are looking for an equivalent key)

= S⊤(Ω−1)⊤ Ω⊤F(s)Ω Ω−1S

=
(
S⊤(Ω−1)⊤

)
◦

(
Ω⊤F(s)Ω

)
◦

(
Ω−1S

)

=

︷ ︸︸ ︷(
Iv S1

0 Im

)⊤
︷ ︸︸ ︷(
ω⊤
1 ω⊤

3

0 ω⊤
4

)(
F(s)
1 F(s)

2

0 0

)(
ω1 0

ω3 ω4

)︷ ︸︸ ︷(
Iv S1

0 Im

)

=

(
Iv S1

0 Im

)⊤(
F′(s)

1 F′(s)
2

0 0

)(
Iv S1

0 Im

)
- An equivalent key!

6 / 24

Equivalent keys for UOV

• Central map: F (s)(x1, . . . , xn) =
∑

i,j∈V ,i⩽j

α
(s)
ij xixj +

∑
i∈V ,j∈O

β
(s)
ij xixj

• F (s) in an upper triangular matrix form: F(s) =

(
F(s)
1 F(s)

2

0 0

)
• P = F ◦S also in matrix form:

P(s) = S⊤F(s)S = (we are looking for an equivalent key)

= S⊤(Ω−1)⊤ Ω⊤F(s)Ω Ω−1S

=
(
S⊤(Ω−1)⊤

)
◦

(
Ω⊤F(s)Ω

)
◦

(
Ω−1S

)

=

︷ ︸︸ ︷(
Iv S1

0 Im

)⊤
︷ ︸︸ ︷(
ω⊤
1 ω⊤

3

0 ω⊤
4

)(
F(s)
1 F(s)

2

0 0

)(
ω1 0

ω3 ω4

)︷ ︸︸ ︷(
Iv S1

0 Im

)

=

(
Iv S1

0 Im

)⊤(
F′(s)

1 F′(s)
2

0 0

)(
Iv S1

0 Im

)
- An equivalent key!

6 / 24

Equivalent keys for UOV

• Central map: F (s)(x1, . . . , xn) =
∑

i,j∈V ,i⩽j

α
(s)
ij xixj +

∑
i∈V ,j∈O

β
(s)
ij xixj

• F (s) in an upper triangular matrix form: F(s) =

(
F(s)
1 F(s)

2

0 0

)
• P = F ◦S also in matrix form:

P(s) = S⊤F(s)S = (we are looking for an equivalent key)

= S⊤(Ω−1)⊤ Ω⊤F(s)Ω Ω−1S

=
(
S⊤(Ω−1)⊤

)
◦

(
Ω⊤F(s)Ω

)
◦

(
Ω−1S

)

=

︷ ︸︸ ︷(
Iv S1

0 Im

)⊤
︷ ︸︸ ︷(
ω⊤
1 ω⊤

3

0 ω⊤
4

)(
F(s)
1 F(s)

2

0 0

)(
ω1 0

ω3 ω4

)︷ ︸︸ ︷(
Iv S1

0 Im

)

=

(
Iv S1

0 Im

)⊤(
F′(s)

1 F′(s)
2

0 0

)(
Iv S1

0 Im

)
- An equivalent key!

6 / 24

Key generation for UOV using equivalent keys

• From the key equation P = F ◦S in matrix form: P(s) = S⊤F(s)S:(
P(s)

1 P(s)
2

0 P(s)
4

)
= Upper

((
I 0

S⊤
1 I

)(
F(s)
1 F(s)

2

0 0

)(
I S1

0 I

))

=

(
F(s)
1 (F(s)

1 + F(s)⊤
1)S1 + F(s)

2

0 Upper (S⊤
1 F

(s)
1 S1 + S⊤

1 F
(s)
2)

)
.

• The standard key generation (not using equivalent keys) would

• Expand from secret seed F(s)
1 ,F(s)

2 and S1

• Calculate

P(s)
1 = F(s)

1 and

P(s)
2 = (P(s)

1 + P(s)⊤
1)S1 + F(s)

2 and

P(s)
4 = Upper (S⊤

1 F
(s)
1 S1 + S⊤

1 F
(s)
2)

• Note immediatelly that we must have a public F(s)
1

7 / 24

Key generation for UOV using equivalent keys

• From the key equation P = F ◦S in matrix form: P(s) = S⊤F(s)S:(
P(s)

1 P(s)
2

0 P(s)
4

)
= Upper

((
I 0

S⊤
1 I

)(
F(s)
1 F(s)

2

0 0

)(
I S1

0 I

))

=

(
F(s)
1 (F(s)

1 + F(s)⊤
1)S1 + F(s)

2

0 Upper (S⊤
1 F

(s)
1 S1 + S⊤

1 F
(s)
2)

)
.

• The standard key generation (not using equivalent keys) would

• Expand from secret seed F(s)
1 ,F(s)

2 and S1

• Calculate

P(s)
1 = F(s)

1 and

P(s)
2 = (P(s)

1 + P(s)⊤
1)S1 + F(s)

2 and

P(s)
4 = Upper (S⊤

1 F
(s)
1 S1 + S⊤

1 F
(s)
2)

• Note immediatelly that we must have a public F(s)
1

7 / 24

Key generation for UOV using equivalent keys

• From the key equation P = F ◦S in matrix form: P(s) = S⊤F(s)S:(
P(s)

1 P(s)
2

0 P(s)
4

)
= Upper

((
I 0

S⊤
1 I

)(
F(s)
1 F(s)

2

0 0

)(
I S1

0 I

))

=

(
F(s)
1 (F(s)

1 + F(s)⊤
1)S1 + F(s)

2

0 Upper (S⊤
1 F

(s)
1 S1 + S⊤

1 F
(s)
2)

)
.

• The standard key generation (not using equivalent keys) would

• Expand from secret seed F(s)
1 ,F(s)

2 and S1

• Calculate

P(s)
1 = F(s)

1 and

P(s)
2 = (P(s)

1 + P(s)⊤
1)S1 + F(s)

2 and

P(s)
4 = Upper (S⊤

1 F
(s)
1 S1 + S⊤

1 F
(s)
2)

• Note immediatelly that we must have a public F(s)
1

7 / 24

Key generation for UOV using equivalent keys

• From the key equation P = F ◦S in matrix form: P(s) = S⊤F(s)S:(
P(s)

1 P(s)
2

0 P(s)
4

)
= Upper

((
I 0

S⊤
1 I

)(
F(s)
1 F(s)

2

0 0

)(
I S1

0 I

))

=

(
F(s)
1 (F(s)

1 + F(s)⊤
1)S1 + F(s)

2

0 Upper (S⊤
1 F

(s)
1 S1 + S⊤

1 F
(s)
2)

)
.

• The standard key generation (not using equivalent keys) would

• Expand from secret seed F(s)
1 ,F(s)

2 and S1

• Calculate

P(s)
1 = F(s)

1 and

P(s)
2 = (P(s)

1 + P(s)⊤
1)S1 + F(s)

2 and

P(s)
4 = Upper (S⊤

1 F
(s)
1 S1 + S⊤

1 F
(s)
2)

• Note immediatelly that we must have a public F(s)
1

7 / 24

Key generation for UOV using equivalent keys

• Again the key equation(
P(s)

1 P(s)
2

0 P(s)
4

)
=

(
F(s)
1 (F(s)

1 + F(s)⊤
1)S1 + F(s)

2

0 Upper (S⊤
1 F

(s)
1 S1 + S⊤

1 F
(s)
2)

)
.

• Note immediatelly that we must have F(s)
1

• The new key generation (using equivalent keys)

• Expands from secret seed: S1 and from public seed: P(s)
1 ,P(s)

2

• Calculate

F(s)
1 = P(s)

1 and

F(s)
2 = P(s)

2 − (P(s)
1 + P(s)⊤

1)S1 and

P(s)
4 = Upper (S⊤

1 P
(s)
1 S1 + S⊤

1 F
(s)
2)

• Only P(s)
4 needs to be stored as non-compressible public key

• for UOV parameters, more than 5/6 reduction of public key

8 / 24

Key generation for UOV using equivalent keys

• Again the key equation(
P(s)

1 P(s)
2

0 P(s)
4

)
=

(
F(s)
1 (F(s)

1 + F(s)⊤
1)S1 + F(s)

2

0 Upper (S⊤
1 F

(s)
1 S1 + S⊤

1 F
(s)
2)

)
.

• Note immediatelly that we must have F(s)
1

• The new key generation (using equivalent keys)

• Expands from secret seed: S1 and from public seed: P(s)
1 ,P(s)

2

• Calculate

F(s)
1 = P(s)

1 and

F(s)
2 = P(s)

2 − (P(s)
1 + P(s)⊤

1)S1 and

P(s)
4 = Upper (S⊤

1 P
(s)
1 S1 + S⊤

1 F
(s)
2)

• Only P(s)
4 needs to be stored as non-compressible public key

• for UOV parameters, more than 5/6 reduction of public key

8 / 24

Further optimizations of UOV

LUOV [Beullens et al. ’17]

• Lifting of coefficients + key generation with equivalent keys

• Coefficient live in ground field, but polynomials and solutions live in extension field
• Significant reduction in key sizes
• NIST Second round candidate
• Unfortunately, proven insecure by Ding et al.’19

9 / 24

MAYO [Beullens ’21]

MAYO [Beullens ’21]

• Submitted to NIST in additional signature round

• Currently, one of the most promising candidates!

• UOV with small oil space + key generation with equivalent keys

• ’Whipping’ technique to expand the oil space so that signing is possible

• Various approaches for whipping possible
• Not yet well understood? More research necessary

10 / 24

The MQ problem

The MQ problem

Computational MQ problem

Given: m multivariate polynomials p1, p2, . . . , pm ∈ Fq[x1, . . . , xn] of degree 2

Find: (if any) a vector (u1, . . . , un) ∈ Fn
q such that

p1(u1, . . . , un) = 0

p2(u1, . . . , un) = 0

. . .

pm(u1, . . . , un) = 0

How hard is it actually?

• Easy when m > number of monomials of degree 2

• linearize and solve as a system of linear equations

• hardest case n ≈ m

• Complexity well understood for “random” systems (correct: systems without structure)

• Gröbner bases, XL, Joux-Vitse algorithms

11 / 24

The MQ problem

Computational MQ problem

Given: m multivariate polynomials p1, p2, . . . , pm ∈ Fq[x1, . . . , xn] of degree 2

Find: (if any) a vector (u1, . . . , un) ∈ Fn
q such that

p1(u1, . . . , un) = 0

p2(u1, . . . , un) = 0

. . .

pm(u1, . . . , un) = 0

How hard is it actually?

• Easy when m > number of monomials of degree 2

• linearize and solve as a system of linear equations

• hardest case n ≈ m

• Complexity well understood for “random” systems (correct: systems without structure)

• Gröbner bases, XL, Joux-Vitse algorithms

11 / 24

The MQ problem

Computational MQ problem

Given: m multivariate polynomials p1, p2, . . . , pm ∈ Fq[x1, . . . , xn] of degree 2

Find: (if any) a vector (u1, . . . , un) ∈ Fn
q such that

p1(u1, . . . , un) = 0

p2(u1, . . . , un) = 0

. . .

pm(u1, . . . , un) = 0

How hard is it actually?

• Easy when m > number of monomials of degree 2

• linearize and solve as a system of linear equations

• hardest case n ≈ m

• Complexity well understood for “random” systems (correct: systems without structure)

• Gröbner bases, XL, Joux-Vitse algorithms

11 / 24

The MQ problem

Computational MQ problem

Given: m multivariate polynomials p1, p2, . . . , pm ∈ Fq[x1, . . . , xn] of degree 2

Find: (if any) a vector (u1, . . . , un) ∈ Fn
q such that

p1(u1, . . . , un) = 0

p2(u1, . . . , un) = 0

. . .

pm(u1, . . . , un) = 0

How hard is it actually?

• Easy when m > number of monomials of degree 2

• linearize and solve as a system of linear equations

• hardest case n ≈ m

• Complexity well understood for “random” systems (correct: systems without structure)

• Gröbner bases, XL, Joux-Vitse algorithms

11 / 24

The MQ problem

Computational MQ problem

Given: m multivariate polynomials p1, p2, . . . , pm ∈ Fq[x1, . . . , xn] of degree 2

Find: (if any) a vector (u1, . . . , un) ∈ Fn
q such that

p1(u1, . . . , un) = 0

p2(u1, . . . , un) = 0

. . .

pm(u1, . . . , un) = 0

How hard is it actually?

• Easy when m > number of monomials of degree 2

• linearize and solve as a system of linear equations

• hardest case n ≈ m

• Complexity well understood for “random” systems (correct: systems without structure)

• Gröbner bases, XL, Joux-Vitse algorithms

11 / 24

The MQ problem

Computational MQ problem

Given: m multivariate polynomials p1, p2, . . . , pm ∈ Fq[x1, . . . , xn] of degree 2

Find: (if any) a vector (u1, . . . , un) ∈ Fn
q such that

p1(u1, . . . , un) = 0

p2(u1, . . . , un) = 0

. . .

pm(u1, . . . , un) = 0

How hard is it actually?

• Easy when m > number of monomials of degree 2

• linearize and solve as a system of linear equations

• hardest case n ≈ m

• Complexity well understood for “random” systems (correct: systems without structure)

• Gröbner bases, XL, Joux-Vitse algorithms

11 / 24

The MQ problem

Computational MQ problem

Given: m multivariate polynomials p1, p2, . . . , pm ∈ Fq[x1, . . . , xn] of degree 2

Find: (if any) a vector (u1, . . . , un) ∈ Fn
q such that

p1(u1, . . . , un) = 0

p2(u1, . . . , un) = 0

. . .

pm(u1, . . . , un) = 0

How hard is it actually?

• Easy when m > number of monomials of degree 2

• linearize and solve as a system of linear equations

• hardest case n ≈ m

• Complexity well understood for “random” systems (correct: systems without structure)

• Gröbner bases, XL, Joux-Vitse algorithms

11 / 24

Security of MQ cryptosystems

• If the MQ problem can be solved, MQ cryptosystems can be broken

• not the right direction of reduction, does not say much about the security. . .

• General MQ system solvers provide nevertheless crude upper security bound

• Generic algebraic system solvers

• Gröbner bases solvers - F4/F5 algorithms
• XL algorithms
• Joux-Vitse algorithm

• Probabilistic algorithms

• Lokshtanov et al.

12 / 24

Security of MQ cryptosystems

• If the MQ problem can be solved, MQ cryptosystems can be broken

• not the right direction of reduction, does not say much about the security. . .

• General MQ system solvers provide nevertheless crude upper security bound

• Generic algebraic system solvers

• Gröbner bases solvers - F4/F5 algorithms
• XL algorithms
• Joux-Vitse algorithm

• Probabilistic algorithms

• Lokshtanov et al.

12 / 24

Security of MQ cryptosystems

• If the MQ problem can be solved, MQ cryptosystems can be broken

• not the right direction of reduction, does not say much about the security. . .

• General MQ system solvers provide nevertheless crude upper security bound

• Generic algebraic system solvers

• Gröbner bases solvers - F4/F5 algorithms
• XL algorithms
• Joux-Vitse algorithm

• Probabilistic algorithms

• Lokshtanov et al.

12 / 24

Security of MQ cryptosystems

• If the MQ problem can be solved, MQ cryptosystems can be broken

• not the right direction of reduction, does not say much about the security. . .

• General MQ system solvers provide nevertheless crude upper security bound

• Generic algebraic system solvers

• Gröbner bases solvers - F4/F5 algorithms
• XL algorithms
• Joux-Vitse algorithm

• Probabilistic algorithms

• Lokshtanov et al.

12 / 24

Security of MQ cryptosystems

• If the MQ problem can be solved, MQ cryptosystems can be broken

• not the right direction of reduction, does not say much about the security. . .

• General MQ system solvers provide nevertheless crude upper security bound

• Generic algebraic system solvers

• Gröbner bases solvers - F4/F5 algorithms
• XL algorithms
• Joux-Vitse algorithm

• Probabilistic algorithms

• Lokshtanov et al.

12 / 24

General principle of algebraic system solvers

• We want to solve 
p1(x1, . . . , xn) = 0

. . .

pm(x1, . . . , xn) = 0

over the field Fq,

• For simplicity, suppose there is a unique solution (u1, u2, . . . , un).

• In Fq[x1, . . . , xn]/⟨xq
1 − x1, . . . , x

q
n − xn⟩ this means that (x1 − u1, x2 − u2, . . . , xn − un)

generates the same space (the same ideal) as the polynomials in the above system

• ⇒ (x1 − u1, x2 − u2, . . . , xn − un) is a basis of the ideal

• ⇒ There exist polynomials hi , i ∈ {1, . . . , n} such that xj − uj =
∑n

i=1 hipi

In a nutshell, the goal of an algebraic solver is to find a “nice” basis of the given ideal

• by finding the right linear combinations
∑n

i=1 hipi

• main tool is linear algebra

13 / 24

General principle of algebraic system solvers

• We want to solve 
p1(x1, . . . , xn) = 0

. . .

pm(x1, . . . , xn) = 0

over the field Fq,

• For simplicity, suppose there is a unique solution (u1, u2, . . . , un).

• In Fq[x1, . . . , xn]/⟨xq
1 − x1, . . . , x

q
n − xn⟩ this means that (x1 − u1, x2 − u2, . . . , xn − un)

generates the same space (the same ideal) as the polynomials in the above system

• ⇒ (x1 − u1, x2 − u2, . . . , xn − un) is a basis of the ideal

• ⇒ There exist polynomials hi , i ∈ {1, . . . , n} such that xj − uj =
∑n

i=1 hipi

In a nutshell, the goal of an algebraic solver is to find a “nice” basis of the given ideal

• by finding the right linear combinations
∑n

i=1 hipi

• main tool is linear algebra

13 / 24

General principle of algebraic system solvers

• We want to solve 
p1(x1, . . . , xn) = 0

. . .

pm(x1, . . . , xn) = 0

over the field Fq,

• For simplicity, suppose there is a unique solution (u1, u2, . . . , un).

• In Fq[x1, . . . , xn]/⟨xq
1 − x1, . . . , x

q
n − xn⟩ this means that (x1 − u1, x2 − u2, . . . , xn − un)

generates the same space (the same ideal) as the polynomials in the above system

• ⇒ (x1 − u1, x2 − u2, . . . , xn − un) is a basis of the ideal

• ⇒ There exist polynomials hi , i ∈ {1, . . . , n} such that xj − uj =
∑n

i=1 hipi

In a nutshell, the goal of an algebraic solver is to find a “nice” basis of the given ideal

• by finding the right linear combinations
∑n

i=1 hipi

• main tool is linear algebra

13 / 24

General principle of algebraic system solvers

• We want to solve 
p1(x1, . . . , xn) = 0

. . .

pm(x1, . . . , xn) = 0

over the field Fq,

• For simplicity, suppose there is a unique solution (u1, u2, . . . , un).

• In Fq[x1, . . . , xn]/⟨xq
1 − x1, . . . , x

q
n − xn⟩ this means that (x1 − u1, x2 − u2, . . . , xn − un)

generates the same space (the same ideal) as the polynomials in the above system

• ⇒ (x1 − u1, x2 − u2, . . . , xn − un) is a basis of the ideal

• ⇒ There exist polynomials hi , i ∈ {1, . . . , n} such that xj − uj =
∑n

i=1 hipi

In a nutshell, the goal of an algebraic solver is to find a “nice” basis of the given ideal

• by finding the right linear combinations
∑n

i=1 hipi

• main tool is linear algebra

13 / 24

General principle of algebraic system solvers

• We want to solve 
p1(x1, . . . , xn) = 0

. . .

pm(x1, . . . , xn) = 0

over the field Fq,

• For simplicity, suppose there is a unique solution (u1, u2, . . . , un).

• In Fq[x1, . . . , xn]/⟨xq
1 − x1, . . . , x

q
n − xn⟩ this means that (x1 − u1, x2 − u2, . . . , xn − un)

generates the same space (the same ideal) as the polynomials in the above system

• ⇒ (x1 − u1, x2 − u2, . . . , xn − un) is a basis of the ideal

• ⇒ There exist polynomials hi , i ∈ {1, . . . , n} such that xj − uj =
∑n

i=1 hipi

In a nutshell, the goal of an algebraic solver is to find a “nice” basis of the given ideal

• by finding the right linear combinations
∑n

i=1 hipi

• main tool is linear algebra

13 / 24

General principle of algebraic system solvers

• We want to solve 
p1(x1, . . . , xn) = 0

. . .

pm(x1, . . . , xn) = 0

over the field Fq,

• For simplicity, suppose there is a unique solution (u1, u2, . . . , un).

• In Fq[x1, . . . , xn]/⟨xq
1 − x1, . . . , x

q
n − xn⟩ this means that (x1 − u1, x2 − u2, . . . , xn − un)

generates the same space (the same ideal) as the polynomials in the above system

• ⇒ (x1 − u1, x2 − u2, . . . , xn − un) is a basis of the ideal

• ⇒ There exist polynomials hi , i ∈ {1, . . . , n} such that xj − uj =
∑n

i=1 hipi

In a nutshell, the goal of an algebraic solver is to find a “nice” basis of the given ideal

• by finding the right linear combinations
∑n

i=1 hipi

• main tool is linear algebra

13 / 24

General principle of algebraic system solvers

• How to find all these linear combinations?

• Form a (Macaulay) matrix with coefficients equal to the coefficients of the polynomials

• rows correspond to mon · pi , for all possible monomials mon in x1, . . . , xn up to degree D − 2

• columns correspond to all possible monomials up to degree D

x6x7x8 x2 x1 1

p1

p2

x1p1

x1p2

. . .

x8p1



1 1 0 0

0 1 1 0

1 . . . 1 0 1

0 1 0 0

.

0 0 1 0


• Try to Gauss-reduce the matrix

• If it does not reduce to the “nice” form, increase D

• The complexity is determined by the size of the matrix and the lowest D that works

14 / 24

General principle of algebraic system solvers

• How to find all these linear combinations?

• Form a (Macaulay) matrix with coefficients equal to the coefficients of the polynomials

• rows correspond to mon · pi , for all possible monomials mon in x1, . . . , xn up to degree D − 2

• columns correspond to all possible monomials up to degree D

x6x7x8 x2 x1 1

p1

p2

x1p1

x1p2

. . .

x8p1



1 1 0 0

0 1 1 0

1 . . . 1 0 1

0 1 0 0

.

0 0 1 0


• Try to Gauss-reduce the matrix

• If it does not reduce to the “nice” form, increase D

• The complexity is determined by the size of the matrix and the lowest D that works

14 / 24

General principle of algebraic system solvers

• How to find all these linear combinations?

• Form a (Macaulay) matrix with coefficients equal to the coefficients of the polynomials

• rows correspond to mon · pi , for all possible monomials mon in x1, . . . , xn up to degree D − 2

• columns correspond to all possible monomials up to degree D

x6x7x8 x2 x1 1

p1

p2

x1p1

x1p2

. . .

x8p1



1 1 0 0

0 1 1 0

1 . . . 1 0 1

0 1 0 0

.

0 0 1 0


• Try to Gauss-reduce the matrix

• If it does not reduce to the “nice” form, increase D

• The complexity is determined by the size of the matrix and the lowest D that works

14 / 24

General principle of algebraic system solvers

• How to find all these linear combinations?

• Form a (Macaulay) matrix with coefficients equal to the coefficients of the polynomials

• rows correspond to mon · pi , for all possible monomials mon in x1, . . . , xn up to degree D − 2

• columns correspond to all possible monomials up to degree D

x6x7x8 x2 x1 1

p1

p2

x1p1

x1p2

. . .

x8p1



1 1 0 0

0 1 1 0

1 . . . 1 0 1

0 1 0 0

.

0 0 1 0


• Try to Gauss-reduce the matrix

• If it does not reduce to the “nice” form, increase D

• The complexity is determined by the size of the matrix and the lowest D that works

14 / 24

General principle of algebraic system solvers

• How to find all these linear combinations?

• Form a (Macaulay) matrix with coefficients equal to the coefficients of the polynomials

• rows correspond to mon · pi , for all possible monomials mon in x1, . . . , xn up to degree D − 2

• columns correspond to all possible monomials up to degree D

x6x7x8 x2 x1 1

p1

p2

x1p1

x1p2

. . .

x8p1



1 1 0 0

0 1 1 0

1 . . . 1 0 1

0 1 0 0

.

0 0 1 0


• Try to Gauss-reduce the matrix

• If it does not reduce to the “nice” form, increase D

• The complexity is determined by the size of the matrix and the lowest D that works

14 / 24

General principle of algebraic system solvers

• Of course, the best algorithms are more sophisticated. . .

• Some techniques include:

• don’t start over from scratch, but reuse some useful results from the previous interaction
• don’t add rows that are linearly dependent

• estimate in advance dreg, and Gauss eliminate only Macaulay matrix of this degree

• benefits: no operations are performed twice + sparse linear algebra can be used

• choose the best ordering of monomials
• enumerate (brute-force) a few variables, and solve all systems of fewer variables

• State of the art

• Gröbner bases solvers - F4/F5 algorithm, XL algorithm (big fields)
• Joux-Vitse algorithm (F2) - we zoom into this one

15 / 24

General principle of algebraic system solvers

• Of course, the best algorithms are more sophisticated. . .

• Some techniques include:

• don’t start over from scratch, but reuse some useful results from the previous interaction
• don’t add rows that are linearly dependent

• estimate in advance dreg, and Gauss eliminate only Macaulay matrix of this degree

• benefits: no operations are performed twice + sparse linear algebra can be used

• choose the best ordering of monomials
• enumerate (brute-force) a few variables, and solve all systems of fewer variables

• State of the art

• Gröbner bases solvers - F4/F5 algorithm, XL algorithm (big fields)
• Joux-Vitse algorithm (F2) - we zoom into this one

15 / 24

General principle of algebraic system solvers

• Of course, the best algorithms are more sophisticated. . .

• Some techniques include:

• don’t start over from scratch, but reuse some useful results from the previous interaction
• don’t add rows that are linearly dependent

• estimate in advance dreg, and Gauss eliminate only Macaulay matrix of this degree

• benefits: no operations are performed twice + sparse linear algebra can be used

• choose the best ordering of monomials
• enumerate (brute-force) a few variables, and solve all systems of fewer variables

• State of the art

• Gröbner bases solvers - F4/F5 algorithm, XL algorithm (big fields)
• Joux-Vitse algorithm (F2) - we zoom into this one

15 / 24

General principle of algebraic system solvers

• Of course, the best algorithms are more sophisticated. . .

• Some techniques include:

• don’t start over from scratch, but reuse some useful results from the previous interaction
• don’t add rows that are linearly dependent

• estimate in advance dreg, and Gauss eliminate only Macaulay matrix of this degree

• benefits: no operations are performed twice + sparse linear algebra can be used

• choose the best ordering of monomials
• enumerate (brute-force) a few variables, and solve all systems of fewer variables

• State of the art

• Gröbner bases solvers - F4/F5 algorithm, XL algorithm (big fields)
• Joux-Vitse algorithm (F2) - we zoom into this one

15 / 24

General principle of algebraic system solvers

• Of course, the best algorithms are more sophisticated. . .

• Some techniques include:

• don’t start over from scratch, but reuse some useful results from the previous interaction
• don’t add rows that are linearly dependent

• estimate in advance dreg, and Gauss eliminate only Macaulay matrix of this degree

• benefits: no operations are performed twice + sparse linear algebra can be used

• choose the best ordering of monomials
• enumerate (brute-force) a few variables, and solve all systems of fewer variables

• State of the art

• Gröbner bases solvers - F4/F5 algorithm, XL algorithm (big fields)
• Joux-Vitse algorithm (F2) - we zoom into this one

15 / 24

General principle of algebraic system solvers

• Of course, the best algorithms are more sophisticated. . .

• Some techniques include:

• don’t start over from scratch, but reuse some useful results from the previous interaction
• don’t add rows that are linearly dependent

• estimate in advance dreg, and Gauss eliminate only Macaulay matrix of this degree

• benefits: no operations are performed twice + sparse linear algebra can be used

• choose the best ordering of monomials
• enumerate (brute-force) a few variables, and solve all systems of fewer variables

• State of the art

• Gröbner bases solvers - F4/F5 algorithm, XL algorithm (big fields)
• Joux-Vitse algorithm (F2) - we zoom into this one

15 / 24

General principle of algebraic system solvers

• Of course, the best algorithms are more sophisticated. . .

• Some techniques include:

• don’t start over from scratch, but reuse some useful results from the previous interaction
• don’t add rows that are linearly dependent

• estimate in advance dreg, and Gauss eliminate only Macaulay matrix of this degree

• benefits: no operations are performed twice + sparse linear algebra can be used

• choose the best ordering of monomials
• enumerate (brute-force) a few variables, and solve all systems of fewer variables

• State of the art

• Gröbner bases solvers - F4/F5 algorithm, XL algorithm (big fields)
• Joux-Vitse algorithm (F2) - we zoom into this one

15 / 24

General principle of algebraic system solvers

• Of course, the best algorithms are more sophisticated. . .

• Some techniques include:

• don’t start over from scratch, but reuse some useful results from the previous interaction
• don’t add rows that are linearly dependent

• estimate in advance dreg, and Gauss eliminate only Macaulay matrix of this degree

• benefits: no operations are performed twice + sparse linear algebra can be used

• choose the best ordering of monomials
• enumerate (brute-force) a few variables, and solve all systems of fewer variables

• State of the art

• Gröbner bases solvers - F4/F5 algorithm, XL algorithm (big fields)
• Joux-Vitse algorithm (F2) - we zoom into this one

15 / 24

Gröbner bases algorithms

• First studied by Bruno Buchberger in the ’60-es

• later improved by Faugère et al. (F4, F5) in ’04

• looks for a nice basis of the ideal generated by the polynomial system

• Considers a specific monomial ordering - best for grevlex ordering

• Complexity for semi-regular systems (“random looking”)

• F5 does not generate “rows” that are linearly dependent (“no reduction to zero”)

O
((

n + dreg − 1

dreg

)ω)
• Hybrid F5 algorithm [Bettale, Faugère, and Perret ’09] - fix k variables for some optimal k

min
k

qkO
((

n − k + dreg − 1

dreg

)ω)

16 / 24

Gröbner bases algorithms

• First studied by Bruno Buchberger in the ’60-es

• later improved by Faugère et al. (F4, F5) in ’04

• looks for a nice basis of the ideal generated by the polynomial system

• Considers a specific monomial ordering - best for grevlex ordering

• Complexity for semi-regular systems (“random looking”)

• F5 does not generate “rows” that are linearly dependent (“no reduction to zero”)

O
((

n + dreg − 1

dreg

)ω)
• Hybrid F5 algorithm [Bettale, Faugère, and Perret ’09] - fix k variables for some optimal k

min
k

qkO
((

n − k + dreg − 1

dreg

)ω)

16 / 24

Gröbner bases algorithms

• First studied by Bruno Buchberger in the ’60-es

• later improved by Faugère et al. (F4, F5) in ’04

• looks for a nice basis of the ideal generated by the polynomial system

• Considers a specific monomial ordering - best for grevlex ordering

• Complexity for semi-regular systems (“random looking”)

• F5 does not generate “rows” that are linearly dependent (“no reduction to zero”)

O
((

n + dreg − 1

dreg

)ω)
• Hybrid F5 algorithm [Bettale, Faugère, and Perret ’09] - fix k variables for some optimal k

min
k

qkO
((

n − k + dreg − 1

dreg

)ω)

16 / 24

The XL algorithm

• Proposed by Courtois et al. ’00

• Several variants - FXL (fixing variables), MutantXL

• Basically also a Gröbner basis algorithm

• Took years to establish the equivalence

• . . . but much simpler presentation and analysis

• Main steps of the algorithm:

1 eXtend - form Macaulay matrix of dergee D

2 Linearize - Apply Gaussian Elimination on the extended system to generate a univariate

polynomial p (the ordering should be such that all terms in one variable (ex. x1) are

eliminated last)

3 Solve - Use Berlekamps algorithm to find roots of the polynomial p

4 Repeat - Substitute the solution of p into the system and continue with the simplified

system

• Complexity:

3 ·
(
n + dXL

dXL

)2

·
(
n

d

)
17 / 24

The XL algorithm

• Proposed by Courtois et al. ’00

• Several variants - FXL (fixing variables), MutantXL

• Basically also a Gröbner basis algorithm

• Took years to establish the equivalence

• . . . but much simpler presentation and analysis

• Main steps of the algorithm:

1 eXtend - form Macaulay matrix of dergee D

2 Linearize - Apply Gaussian Elimination on the extended system to generate a univariate

polynomial p (the ordering should be such that all terms in one variable (ex. x1) are

eliminated last)

3 Solve - Use Berlekamps algorithm to find roots of the polynomial p

4 Repeat - Substitute the solution of p into the system and continue with the simplified

system

• Complexity:

3 ·
(
n + dXL

dXL

)2

·
(
n

d

)
17 / 24

The XL algorithm

• Proposed by Courtois et al. ’00

• Several variants - FXL (fixing variables), MutantXL

• Basically also a Gröbner basis algorithm

• Took years to establish the equivalence

• . . . but much simpler presentation and analysis

• Main steps of the algorithm:

1 eXtend - form Macaulay matrix of dergee D

2 Linearize - Apply Gaussian Elimination on the extended system to generate a univariate

polynomial p (the ordering should be such that all terms in one variable (ex. x1) are

eliminated last)

3 Solve - Use Berlekamps algorithm to find roots of the polynomial p

4 Repeat - Substitute the solution of p into the system and continue with the simplified

system

• Complexity:

3 ·
(
n + dXL

dXL

)2

·
(
n

d

)
17 / 24

The XL algorithm

• Proposed by Courtois et al. ’00

• Several variants - FXL (fixing variables), MutantXL

• Basically also a Gröbner basis algorithm

• Took years to establish the equivalence

• . . . but much simpler presentation and analysis

• Main steps of the algorithm:

1 eXtend - form Macaulay matrix of dergee D

2 Linearize - Apply Gaussian Elimination on the extended system to generate a univariate

polynomial p (the ordering should be such that all terms in one variable (ex. x1) are

eliminated last)

3 Solve - Use Berlekamps algorithm to find roots of the polynomial p

4 Repeat - Substitute the solution of p into the system and continue with the simplified

system

• Complexity:

3 ·
(
n + dXL

dXL

)2

·
(
n

d

)
17 / 24

The Joux-Vitse algorithm

• Proposed by Joux and Vitse in 2017

• Very similar to FXL but with a very clever approach to fixing

• Significantly improves over other algorithms in the practical regime

• Assymptotically it is actually the same as other Gröbner basis algorithms

• Currently the best approach for small fields

• For F2 beats enumeration at n = 37, other algorithms around n = 200

18 / 24

The Joux-Vitse algorithm

• Proposed by Joux and Vitse in 2017

• Very similar to FXL but with a very clever approach to fixing

• Significantly improves over other algorithms in the practical regime

• Assymptotically it is actually the same as other Gröbner basis algorithms

• Currently the best approach for small fields

• For F2 beats enumeration at n = 37, other algorithms around n = 200

18 / 24

The Joux-Vitse algorithm

• Proposed by Joux and Vitse in 2017

• Very similar to FXL but with a very clever approach to fixing

• Significantly improves over other algorithms in the practical regime

• Assymptotically it is actually the same as other Gröbner basis algorithms

• Currently the best approach for small fields

• For F2 beats enumeration at n = 37, other algorithms around n = 200

18 / 24

An example

Consider the following system:

x1x2 + x1x3 + x2x3 + x1 + x3 = 0

x1x3 + x2x3 + x3x4 + x2 + x3 + x4 = 0

x2x4 + x3x4 + x1 + x3 + 1 = 0

x1x2 + x1x4 + x2x3 + x3 + x4 + 1 = 0

x2x3 + x3x4 + x1 + x3 + x4 = 0

The Macaulay matrix of degree 2 (for lexicographic ordering) is

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

p1

p2

p3

p4

p5


1 1 0 1 1 0 0 0 1 0 1

0 1 0 0 1 0 1 1 1 1 0

0 0 0 1 0 1 0 1 1 0 1

1 0 1 0 1 0 0 0 1 1 1

0 0 0 1 1 0 0 1 1 1 0

 ∼


1 1 0 1 1 0 0 0 1 0 1

0 1 0 0 1 0 1 1 1 1 0

0 0 0 1 0 1 0 1 1 0 1

0 0 1 1 1 0 1 1 1 0 0

0 0 0 0 1 1 0 0 0 1 1


Last equation is: x2x3 + x2x4 + x4 + 1 = 0 - we removed one variable (but this is not enough)

19 / 24

An example

Consider the following system:

x1x2 + x1x3 + x2x3 + x1 + x3 = 0

x1x3 + x2x3 + x3x4 + x2 + x3 + x4 = 0

x2x4 + x3x4 + x1 + x3 + 1 = 0

x1x2 + x1x4 + x2x3 + x3 + x4 + 1 = 0

x2x3 + x3x4 + x1 + x3 + x4 = 0

The Macaulay matrix of degree 2 (for lexicographic ordering) is

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

p1

p2

p3

p4

p5


1 1 0 1 1 0 0 0 1 0 1

0 1 0 0 1 0 1 1 1 1 0

0 0 0 1 0 1 0 1 1 0 1

1 0 1 0 1 0 0 0 1 1 1

0 0 0 1 1 0 0 1 1 1 0

 ∼


1 1 0 1 1 0 0 0 1 0 1

0 1 0 0 1 0 1 1 1 1 0

0 0 0 1 0 1 0 1 1 0 1

0 0 1 1 1 0 1 1 1 0 0

0 0 0 0 1 1 0 0 0 1 1


Last equation is: x2x3 + x2x4 + x4 + 1 = 0 - we removed one variable (but this is not enough)

19 / 24

An example

• The above matrix had
(
4
2

)
+ 4 + 1 = 11 columns and 5 rows

• If we make the degree 3 Macaulay matrix we will have
(
4
3

)
+
(
4
2

)
+ 4 + 1 = 15 columns and

4 · 5 + 5 = 25 rows

• Gauss elimination will certainly give us a solution since we have an overdetermined system

• Downside - we needed to make a bigger matrix

• For example for n = m = 20 we get 1351 columns and 400 rows - already a huge matrix, but

unfortunatelly can’t be echelonized to give us a unique solution.
• We need an even bigger matrix of degree 4

• In general, we need a big enough degree D to get more (independent) rows than columns

20 / 24

An example

• The above matrix had
(
4
2

)
+ 4 + 1 = 11 columns and 5 rows

• If we make the degree 3 Macaulay matrix we will have
(
4
3

)
+
(
4
2

)
+ 4 + 1 = 15 columns and

4 · 5 + 5 = 25 rows

• Gauss elimination will certainly give us a solution since we have an overdetermined system

• Downside - we needed to make a bigger matrix

• For example for n = m = 20 we get 1351 columns and 400 rows - already a huge matrix, but

unfortunatelly can’t be echelonized to give us a unique solution.
• We need an even bigger matrix of degree 4

• In general, we need a big enough degree D to get more (independent) rows than columns

20 / 24

Towards analysis of algebraic solvers

• Let TD =
(
n+D
D

)
- the number of monomials of degree at most D

• ND = TD - columns in Macaulay matrix

• RD = mTD−2 - rows in Macaulay matrix

• Previous example suggests we need D such that: RD ⩾ ND

• Sort of . . .What if some rows are linearly dependent?

• Are there always such dependencies?
• How to find them and count them?

• These dependencies/relations are called “syzygies”

• In general they are hard to find for a given system, unless there is no hidden structure, i.e. the

system is semi-regular

• Semi-regular overdetermined systems - no other syzigies but the trivial ones fi fj − fj fi = 0 exist

• We need to remove the syzigies
• We can Gauss-reduce the Macaulay matrix as soon as the dimension of the row space is

larger than ND

21 / 24

Towards analysis of algebraic solvers

• Let TD =
(
n+D
D

)
- the number of monomials of degree at most D

• ND = TD - columns in Macaulay matrix

• RD = mTD−2 - rows in Macaulay matrix

• Previous example suggests we need D such that: RD ⩾ ND

• Sort of . . .What if some rows are linearly dependent?

• Are there always such dependencies?
• How to find them and count them?

• These dependencies/relations are called “syzygies”

• In general they are hard to find for a given system, unless there is no hidden structure, i.e. the

system is semi-regular

• Semi-regular overdetermined systems - no other syzigies but the trivial ones fi fj − fj fi = 0 exist

• We need to remove the syzigies
• We can Gauss-reduce the Macaulay matrix as soon as the dimension of the row space is

larger than ND

21 / 24

Towards analysis of algebraic solvers

• Let TD =
(
n+D
D

)
- the number of monomials of degree at most D

• ND = TD - columns in Macaulay matrix

• RD = mTD−2 - rows in Macaulay matrix

• Previous example suggests we need D such that: RD ⩾ ND

• Sort of . . .What if some rows are linearly dependent?

• Are there always such dependencies?
• How to find them and count them?

• These dependencies/relations are called “syzygies”

• In general they are hard to find for a given system, unless there is no hidden structure, i.e. the

system is semi-regular

• Semi-regular overdetermined systems - no other syzigies but the trivial ones fi fj − fj fi = 0 exist

• We need to remove the syzigies
• We can Gauss-reduce the Macaulay matrix as soon as the dimension of the row space is

larger than ND

21 / 24

Towards analysis of algebraic solvers

• Let TD =
(
n+D
D

)
- the number of monomials of degree at most D

• ND = TD - columns in Macaulay matrix

• RD = mTD−2 - rows in Macaulay matrix

• Previous example suggests we need D such that: RD ⩾ ND

• Sort of . . .What if some rows are linearly dependent?

• Are there always such dependencies?
• How to find them and count them?

• These dependencies/relations are called “syzygies”

• In general they are hard to find for a given system, unless there is no hidden structure, i.e. the

system is semi-regular

• Semi-regular overdetermined systems - no other syzigies but the trivial ones fi fj − fj fi = 0 exist

• We need to remove the syzigies
• We can Gauss-reduce the Macaulay matrix as soon as the dimension of the row space is

larger than ND

21 / 24

Towards analysis of algebraic solvers

We can use generating functions to analyze this.

• Let [tD] denote the coefficient in front of tD

• TD = [tD] 1
(1−t)n+1 - the number of monomials of degree at most D

• ND = TD - columns in Macaulay matrix

• ID = [tD] 1−(1−t2)m

(1−t)n+1 - independent rows in Macaulay matrix

• Now, condition for full rank ND of degree D Macaulay matrix becomes:

[tD](TD − ID) < 0, i.e.

[tD] (1−t2)m

(1−t)n+1 < 0

• Hence, we need to calculate the smallest D that satisfies this condition and use degree D

Macaulay matrix to solve the system

22 / 24

Towards analysis of algebraic solvers

We can use generating functions to analyze this.

• Let [tD] denote the coefficient in front of tD

• TD = [tD] 1
(1−t)n+1 - the number of monomials of degree at most D

• ND = TD - columns in Macaulay matrix

• ID = [tD] 1−(1−t2)m

(1−t)n+1 - independent rows in Macaulay matrix

• Now, condition for full rank ND of degree D Macaulay matrix becomes:

[tD](TD − ID) < 0, i.e.

[tD] (1−t2)m

(1−t)n+1 < 0

• Hence, we need to calculate the smallest D that satisfies this condition and use degree D

Macaulay matrix to solve the system

22 / 24

Back to our example

The Macaulay matrix of degree 2 (for lexicographic ordering) is

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

p1

p2

p3

p4

p5


1 1 0 1 1 0 0 0 1 0 1

0 1 0 0 1 0 1 1 1 1 0

0 0 0 1 0 1 0 1 1 0 1

1 0 1 0 1 0 0 0 1 1 1

0 0 0 1 1 0 0 1 1 1 0


• Call the columns x1x2, x1x3 and x2x3 - matrix M ′

• If we remove M ′, the rest is bilinear in x1, x2, x3 and x4

• If we fix x4 we obtain a linear system in x1, x2, x3

• Hence, if we find at least 3 vectors in the kernel of the matrix M ′ we can use these

1 to trasform the Macaulay matrix to one that has M ′ removed and has at least 3 rows

2 to enumerate over all values for x4

3 to solve a linear system in x1, x2, x3

These are basically the steps of the Joux-Vitse algorithm!

23 / 24

Back to our example

The Macaulay matrix of degree 2 (for lexicographic ordering) is

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

p1

p2

p3

p4

p5


1 1 0 1 1 0 0 0 1 0 1

0 1 0 0 1 0 1 1 1 1 0

0 0 0 1 0 1 0 1 1 0 1

1 0 1 0 1 0 0 0 1 1 1

0 0 0 1 1 0 0 1 1 1 0


• Call the columns x1x2, x1x3 and x2x3 - matrix M ′

• If we remove M ′, the rest is bilinear in x1, x2, x3 and x4

• If we fix x4 we obtain a linear system in x1, x2, x3

• Hence, if we find at least 3 vectors in the kernel of the matrix M ′ we can use these

1 to trasform the Macaulay matrix to one that has M ′ removed and has at least 3 rows

2 to enumerate over all values for x4

3 to solve a linear system in x1, x2, x3

These are basically the steps of the Joux-Vitse algorithm!

23 / 24

Back to our example

The Macaulay matrix of degree 2 (for lexicographic ordering) is

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

p1

p2

p3

p4

p5


1 1 0 1 1 0 0 0 1 0 1

0 1 0 0 1 0 1 1 1 1 0

0 0 0 1 0 1 0 1 1 0 1

1 0 1 0 1 0 0 0 1 1 1

0 0 0 1 1 0 0 1 1 1 0


• Call the columns x1x2, x1x3 and x2x3 - matrix M ′

• If we remove M ′, the rest is bilinear in x1, x2, x3 and x4

• If we fix x4 we obtain a linear system in x1, x2, x3

• Hence, if we find at least 3 vectors in the kernel of the matrix M ′ we can use these

1 to trasform the Macaulay matrix to one that has M ′ removed and has at least 3 rows

2 to enumerate over all values for x4

3 to solve a linear system in x1, x2, x3

These are basically the steps of the Joux-Vitse algorithm!

23 / 24

The Joux-Vitse algorithm - informal description

For appropriately chosen degree D Macaulay matrix M:

1 Take M ′ to be the matrix of columns of M that correspond to monomials of deg > 1 in the first

k variables

2 Find k independent vectors in the kernel of M ′

3 Multiply these vectors by M to obtain a matrix M′

4 For each possible value of the last n − k variables form a linear system from M′. If it has a

solution, output it as the solution to the given system

24 / 24

	Public key optimization techniques
	The MQ problem

