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Recall the MinRank problem

MinRank MR(n,m,r, My, ..., Mp)
Input: n,m,r € N, and My, ..., My € M,(Fy).
Question: Find — if any — a nonzero m-tuple (A1,...,Am) € Fg s.t.:

Rank (i Ai I\/I,-> <r.

i=1

[Courtois '01], [Buss & Shallit '99]
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How do we use MinRank in cryptanalysis?

P = (p1,p2,---,Pm) - public polynomials,
P1, P2, ..., Pn - matrix representations of the coordinates of P.

p1 P2 P3 Pm-1 Pm
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How do we use MinRank in cryptanalysis?

P = (p1,p2,---,Pm) - public polynomials,
P1, P2, ..., Pn - matrix representations of the coordinates of P.

Rank <Z A P,-) <r
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How do we use MinRank in cryptanalysis?

P = (p1,p2,---,Pm) - public polynomials,
P1, P2, ..., Pn - matrix representations of the coordinates of P.

Rank <Z by P,-) <r ~ B S is determined by
i=1
i — [ AP
Rank (ZA; P,-) <r (Z )
":1 N Ker (Z AP )

T is determined by

p1 P2 P3 Pm—1 <()\17 °o00 g AI‘n)a
Atse s Am)
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Baby example UOV

Similar approach works for UOV, although it is not a result of “rank defect” (at leaset not so obvious)

f(x1, ..., %) = X1x2 + XoXxa + X3X6 + XaXe + XsX6 + X6
f(x1,...,%X6) = X1Xa + X3xa + X3X6 + XaXe + X6
f3(X1, ..., X6) = X2X3 + X3X5 + XoX4 + XoXe + XaXs + X1X6 + XaXe + X5 X6
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Baby example UOV

Similar approach works for UOV, although it is not a result of “rank defect” (at leaset not so obvious)

f(x1, ..., %) = X1x2 + XoXxa + X3X6 + XaXe + XsX6 + X6
f(x1,...,%X6) = X1Xa + X3xa + X3X6 + XaXe + X6
f3(X1, ..., X6) = X2X3 + X3X5 + XoX4 + XoXe + XaXs + X1X6 + XaXe + X5 X6

S x4 — x4+ X6
X2 — X2 + X5

After change of variables, we have separated (some) of the oil space(xs, xs)

f(x1,. .., X6) = X1X2 + X1X5 + X2X4 + XoX6 + XaXs + X3X6 + XaXe
f(x1,...,X6) = X1X4 + X1X6 + X3Xa + XaX6
f(x1,...,X6) = XoX3 + XoXa + XaXe + X1X6 + X6
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UQV partial revealing of structure (“good keys”)

uov

)= 5 5 xix +
V.jev

IE

Ty +ov Ty -+ T

z
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In

() .
Z Vi T XiXj»
ieVv.,jeo

vinegar variables

: } oil variables

Good Keys for UOV
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Rainbow partial revealing of structure (“good keys”)

Rainbow before and after applying an input and output change of basis
(separating a a good key)

F18+12+12+4 F18+12+124 F18+12+12+4 F18+12+12+4

and : and
g 1 : : n
303 5 i 312) O, Fan,
E 3/(13)_ . 731(24)
U1+ 01+ 024
: ‘ T
S0 10 u
D e +
0 0 |o1= s’
e e N _I.
0:0 02
1

Good key for Rainbow -
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Measuring linear spaces



Linear spaces of (n, m)-functions

e Differential of f: D, f(x) = f(x + w) — f(x) — f(w) + £(0)
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Linear spaces of (n, m)-functions

® Differential of f: Dy, f(x) = f(x + w) — f(x) — f(w) + £(0)
® Linearity for (n, m) functions f : Fj — Fy' defined already 1992 by Nyberg
® w ¢ Iy - linear structure of f if
D,f(x)=0 VxelFy.
® Linear space of f - generated by the linear structures of f.
Quadratic form f: D, f(x) = wTFx, for a symmetric matrix F,

® Ker(F) - linear space of f.

[Nyberg92] Quadratic (n, m)-function f:

® Linearity - measured using the smallest rank r of any of the components wT -
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Linear spaces of (n, m)-functions

e Differential of : D, f(x) = f(x 4+ w) — f(x) — f(w) + 7(0)
® Linearity for (n, m) functions f : Fj — Fy' defined already 1992 by Nyberg

® w ¢ Iy - linear structure of f if
D,f(x)=0 VxelFy.
® Linear space of f - generated by the linear structures of f.

Quadratic form f: D, f(x) = wTFx, for a symmetric matrix F,

® Ker(F) - linear space of f.
[Nyberg92] Quadratic (n, m)-function f:

® Linearity - measured using the smallest rank r of any of the components wT - f.

Maximum nonlinearity:

® Bent functions - Rank(F,) = n, even n, m < n/2,
® Almost bent (AB) functions - Rank(F,) =n—1, odd n=m.
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Example 1:

f g
i = xe+x3 i = xxe+x
h = xx3+x+x3 fi = xetx+x
h = Xx3+x+x+x3 fi = xexs+xi+x+x
= xix fi = xo+xx
(1,0,0,1)T  -f is linear (1,0,1,1)™ . is linear

(1,1,0,0)" .’ is linear
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Example 1:

fi
f2
f3
fa

(1,0,0,1)7

= Xx1X2 + X3
X1X3 + X2 + X3
XoX3 + X1 + X2 + X3

= X1X2

-f is linear

f-ll
f-2/

f;{

(1,0,1,1)"
(1’ 17 07 O)T

= X1X2 + X3
= X1X2 +Xx2+ x3
X2X3 + X1 + X2 + X3

=  Xx1xX2 + Xx2Xx3

-f" is linear

-f" is linear

Both have maximum linearity, but f’ is linear on a larger space!

It is an important measure!
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Oil & Vinegar maps

f:

f(x1, X2, X3, Xa) = X1X3 + XoXa + X1%2 + X3

f(X1, X2, X3, Xa) = X2X3 + X1Xa + XoXa + X3
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Oil & Vinegar maps

f:

f(x1, X2, X3, Xa) = X1X3 + X2Xa + X1%2 + X3

f(x1, X2, X3, Xa) = X2X3 + X1Xa + XoXa + X3
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Oil & Vinegar maps

f:

fi(x1, X2, X3, Xa) = X1X3 + Xoxa + x1%2 + X3

f(X1, X2, X3, Xa) = X2X3 + X1Xa + XoXa + X3
f is linear on the oil subspace (when you fix the vinegar variables)!

fl( ’ 7X37X4): X3+ oXg + + x3

f2( P 7X37X4): X3+ Ci1Xa + X4 + X3
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(s, t)-linearity of quadratic (n, m) function f

Boura and Canteaut FSE13:

f is said to be (s, t)-linear if there exist linear subspaces
V C Fg with Dim(V) =s, W C F7 with Dim(W) = t, s.t.

VweW, w'-fislinear on all cosets of V.

10/23



(s, t)-linearity of quadratic (n, m) function f

Boura and Canteaut FSE13:

f is said to be (s, t)-linear if there exist linear subspaces
V C Fg with Dim(V) =s, W C F7 with Dim(W) = t, s.t.

VweW, w'-fislinear on all cosets of V.

® fy corresponding to all wT - f, w € W can be written as
fw(x,y) = M(x) -y + G(x)

where Fg = U® V, G: U — F; and M(x) is a t X s matrix
with rows - components of linear functions over U.
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where Fg = U® V, G: U — F; and M(x) is a t X s matrix
with rows - components of linear functions over U.

e forwe W, D,w'-f(b)=0, VabeV.
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(s, t)-linearity of quadratic (n, m) function f

Boura and Canteaut FSE13:

f is said to be (s, t)-linear if there exist linear subspaces
V C Fg with Dim(V) =s, W C F7 with Dim(W) = t, s.t.

VweW, w'-fislinear on all cosets of V.

® fy corresponding to all wT - f, w € W can be written as
fw(x,y) = M(x) -y + G(x)
where Fg = U® V, G: U — F; and M(x) is a t X s matrix
with rows - components of linear functions over U.
e forwe W, D,w'-f(b)=0, VabeV.

e forwe W, fw(0,y)= M(0)-y+ G(0) =0,V (0,a) € V - all components in W vanish on
the V space

10/23



fl( y 7X37X4): X3+ X4 + + X3

f(1, 50, X3, Xa) = x0X3 + X1Xa + 0Xa + X3

fis (2,2)-linear,
vV ={((0,0,1,0),(0,0,0,1)), W = ((1,0),(0,1))
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fl( y 7X37X4): X3+ X4 + + X3

f(1, 50, X3, Xa) = x0X3 + X1Xa + 0Xa + X3

fis (2,2)-linear,
vV ={((0,0,1,0),(0,0,0,1)), W = ((1,0),(0,1))

fl( 7X2>X3>X4): X3+ Xg + X2
f2( 7X2>X3>X4) = X1X2 + X1Xa + X1X3
fz‘}( 7X2>X3>X4) = X3 + XoX3 + XoXa

f is (3,2)-linear,
vV =((0,1,0,0),(0,0,1,0),(0,0,0,1)), W = ((1,0,0),(0,1,0))
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Back to UOV - what does the above mean?

D.f(b) =0, V a,bin the oil space O.
f(0,a) =0,V a € O - the oil and vinegar map vanishes on the oil space!

Basis for the new definition of UOV [Beullens21]
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Back to UOV - what does the above mean?

D.f(b) =0, V a,bin the oil space O.
f(0,a) =0,V a € O - the oil and vinegar map vanishes on the oil space!

Basis for the new definition of UOV [Beullens21]

A consequence? - Reconciliation Attack [Ding et al.]

In a nutshel: Recover (s, m) linearity of the public P :Py,...,Pn

Solve:
xUPxk) = 0, ie{l,...m}, jke{l, .. st j<k
xWpxk) = 0 je {1,....,m}, ke {l,..,s},

in the unknown basis vectors xU) of the oil space O,

where P; == P; + 5,7
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Reconciliation attack [Ding et al.]

As given in [SG14]:
@ Solve the quadratic

Upx® = o, e {1,...m}, j,ke{l,..,c},j<k
xXpx® = o0, je {1,....,m}, ke{l,.. c},

in the unknown basis vectors x() of the space O.

[ m(}') quadratic and bilinear equations (n — m)c variables
We must choose ¢ s.t.  m(°}') > (n— m)c (typically at least 2)]

@ Then solve the linear
xPix¥ =0, ie{l,..,m}je{l,..,chke{c+1,..,m}j<k

in the unknown basis vectors x*) of the oil space O.

[For first k, mc linear equations (n — m) variables
Works if m(c + 1) > n,
otherwise plug in in step 1 and solve easier quadratic system|]
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Making the reconciliation attack practical

Important about the attack:

® |f ¢ taken big enough in the first step, second step is always polynomial
® First step is the expensive one
® Questions:

® Can we have a polynomial second step for smaller ¢?

® Yes, only one vector seems to be enough!

® Can we find easier (than step 1) vectors in the oil space?

® Yes, intersection attack!
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One oil vector breaks UOV!

® Shown in [Aulbach, Campos, Kramer, S, Stottinger '23]

® Simpler view in [Pébereau’24]

Assume n < 3m
Assume an oil vector o is known
Recall that ‘ Dof(b) =0, V bin the oil space O.

so the oil space O lives in the kernel of the differential D,
|[Ker(Do)| =n—m

Restrict the public key to Ker(D,) using a basis matrix Sker
P ker(Do) = P © Sker

Obtain a (n — m, m) UOV instance
® Unknown oil space O’ can be found by Kipnis-Shamir attack '98 (becomes polynomial)
® Alternatively, use Step 2 of reconciliation attack for ¢ = 1 (becomes polynomial)
Go back to original UOV instance
® Basis of unknown oil space Bo = Sker - Bor
15/23



Finding one oil vector: enhancement of Kipnis-Shamir attack '98

® Kipnis-Shamir attack '98 - Broke Oil & Vinegar by Patarin (n = 2m)
® Recall that D,f(b) =0, V b in the oil space O.
® |n matrix form
oVpPio® = 0, ie{1,..,m}, jke{l,.., m}
P,-O C OJ_
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Finding one oil vector: enhancement of Kipnis-Shamir attack '98

Kipnis-Shamir attack '98 - Broke Oil & Vinegar by Patarin (n = 2m)
Recall that D,f(b) =0, V b in the oil space O.
In matrix form

opPio® = 0, ie{1,...,m}, jke{l,.. m}
P,-O c O

|IPi-O| =m, ’OL’:nfm
IPi-ONP;-0[>|P;-O|+|P;-O|— |0"|=3m—n

F» F» IF;L F™
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Finding one oil vector: enhancement of Kipnis-Shamir attack '98

Kipnis-Shamir attack '98 - Broke Oil & Vinegar by Patarin (n = 2m)
Recall that D,f(b) =0, V b in the oil space O.
In matrix form

opPio® = 0, ie{1,...,m}, jke{l,.. m}
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16 /23



Intersection attack [Beullens '20]

® Focuson n<3m

® We want to find x in the intersection P, - ONP;- O
® But then P, 'x € O and Pj_lx € O are two oil vectors
® We can do the reconciliation attack but on steroids!

® Fix 3m — n coordinates of x and solve the quadratic system
(Pr'x)"PiPy'x = 0,ie{l,...,m}
(P7x)"Pi(Py'x) 0, ie{l,..,m}
(P5x) " Pi(P; 'x) 0, ie{l,..,m}

® 3m equations and 2n — 3m variables
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Intersection attack [Beullens '20]

® Focuson n<3m

® We want to find x in the intersection P, - ONP;- O
® But then P, 'x € O and Pj_lx € O are two oil vectors
® We can do the reconciliation attack but on steroids!

® Fix 3m — n coordinates of x and solve the quadratic system
(Pr'x)'PPy'x = 0,ie{l,..,m}
(P7x)"Pi(Py'x) 0, ie{l,..,m}
(P5x) " Pi(P; 'x) 0, ie{l,..,m}

® 3m equations and 2n — 3m variables

® We now have two oil vectors, the rest is easy!
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Now, let’s think again about our measures of linearity

Better said, let’s take a different perspective...

So far we considered m symmetric matrices representing our polynomials.

Like this:
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Better said, let’s take a different perspective...

So far we considered m symmetric matrices representing our polynomials.
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Now, let’s think again about our measures of linearity

Better said, let’s take a different perspective...

So far we considered m symmetric matrices representing our polynomials.

Like this: But, this is also good. .. And this!

7

7

® This is different tensor view, but the same object!

® |nstead of array of two-dimensional matrices, we look at it as a three-dimensional qube!

18/23



How does this change perspective?

Recall, UOV has an important hidden linear spaces (the oil space). ..

But no rank defects!
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How does this change perspective?

Recall, UOV has an important hidden linear spaces (the oil space). ..
But no rank defects!

Sure?

® |n the second and third view, we observe a rank defect!
® We can use (Rectangular) MinRank!

® Beullens '22 used it to improve the analysis on UOV and Rainbow
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How does this change perspective?

Recall, UOV has an important hidden linear spaces (the oil space). ..
But no rank defects!

Sure?

® |n the second and third view, we observe a rank defect!

® We can use (Rectangular) MinRank!

Beullens '22 used it to improve the analysis on UOV and Rainbow

® Important takeaway: The two types of important linear spaces can be characterized in the

same way!

19/23



Equivalent keys used wrong

® MQ-Sign - submitted to the Korean PQC competition for standardization

® Now a finalist
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Equivalent keys used wrong

® MQ-Sign - submitted to the Korean PQC competition for standardization
® Now a finalist
® MQ-Sign design principle:

® UOV map

® Sparse polynomials to reduce key size - only v coefficients per polynomial
® Four variants with different level of sparsness

Equivalent keys technique to reduce key size
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® Polynomial time attack [AST23] on the sparse variants

Result of flawed use of equivalent keys
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MQ-Sign Central map
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MQ-Sign Central map

0o Y o 0

) 0 0 A 0

FP = Z’Yfl)xix(i mod i1 —  FY) = :
0 0 0 7,

A0 o 0
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MQ-Sign Central map

Fy = ZW}I)X:‘X(; mod i1 —  FY) =
P

]:5/2) = Z VEZ)XiX(i+1 mod v)+1 - F
i=1

2 _
7=

2
’75—)1

1
oo
o
0
0
0
0 0
0 0
0
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Derive Linear Equations from Key Equation

Recall that the key equation P = Fo S translates to the matrix equations P®) = §TF®§,
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Derive Linear Equations from Key Equation

Recall that the key equation P = F o S translates to the matrix equations P®) = STFXS je.

P p 10\ (F¥ FP\ (1 sy
o p0) =P (s Jlo o)lo 1

(R s e
0 Upper (S{F¥s; +STFM)
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Derive Linear Equations from Key Equation

Recall that the key equation P = F o S translates to the matrix equations P®) = STFXS je.

P p 10\ (F¥ FP\ (1 sy
o p0) =P (s Jlo o)lo 1

(R s e
0 Upper (S{F¥s; +STFM)

From the two upper blocks, as previous, we obtain the equations

PY = F¥ and
Py = (PP +PMT)s 4+ FY.
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Derive Linear Equations from Key Equation

Recall that the key equation P = F o S translates to the matrix equations P®) = STFXS je.

P p 10\ (F¥ FP\ (1 sy
o p0) =P (s Jlo o)lo 1

(R s e
0 Upper (S{F¥s; +STFM)

From the two upper blocks, as previous, we obtain the equations

0]

P(lk) 1 and

Py = (PP +PMT)s 4+ FY.

® The second is a system of linear equations in the entries of the secret S;
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Derive Linear Equations from Key Equation

Recall that the key equation P = F o S translates to the matrix equations P®) = STFXS je.

P p 10\ (F¥ FP\ (1 sy
o p0) =P (s Jlo o)lo 1

(R s e
0 Upper (S{F¥s; +STFM)

From the two upper blocks, as previous, we obtain the equations

0]

P(lk) 1 and

Py = (PP +PMT)s 4+ FY.

® The second is a system of linear equations in the entries of the secret S;

e Still, not possible to determine them, due to the secret coefficients in ng)

22/23



Efficient Key-Recovery

In two variants of MQ-Sign, the coefficients in F(zk) are chosen sparsely.

This removes unknown variables from the system
P = (PY + PYITYS, + FY.

0o A 0
k k ,(k ,(k
P§,3+1 T P§,3+m Pl(,1) T P1(,v) Sii ottt Sim *)
0 0 v
: : = : : : N =1
o o o o . . ’Y(k) 0 . 0
CR() () . m
pv,v+1 v,v+m pv71 pv,v Svi Svm . 0
public public secret 0 O 0

secret, but known structure
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In two variants of MQ-Sign, the coefficients in F(zk) are chosen sparsely.

This removes unknown variables from the system

P = (PY + PYITYS, + FY.

0 4 0
k k ,(k ,(k
p§,3+1 P§,3+m pl(,l) T P1EV) S11 Sim )
0 0 vy
: : = : : : D+ @=L
: : : : : : ,Y(k) 0 ... 0
(k) (k) (k) () . m
Py,vi1 v,v+m pv71 Pv,v Svl Svm . 0
public public secret 0 O 0

secret, but known structure
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Efficient Key-Recovery

In two variants of MQ-Sign, the coefficients in F(zk) are chosen sparsely.

This removes unknown variables from the system

P = (P + PM TS, + F.

0 0
K k J(k (K
P§,3+1 T P£,3+m pl(,l) T Pl(,v) Si1 ot Sim ")
0 0 7,
: : = : : I m=l
: : : : ’Y(k) 0 0
K k J(k J(k m
p\(/,\)/+1 e p(v,\)/+m pv(,l) co p\)(,v) Svi ' Sum . 0
public public secret 0 0 0

secret, but known structure
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Efficient Key-Recovery

In two variants of MQ-Sign, the coefficients in F(zk) are chosen sparsely.

This removes unknown variables from the system
P = (P + PYITYS, + FYY.
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Efficient Key-Recovery

In two variants of MQ-Sign, the coefficients in F(zk) are chosen sparsely.
This removes unknown variables from the system

P = (PY + PYITYS, + F.
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® Collect linear equations for all k € {1,..., m} polynomials.

® Obtain system of mv(m — 1) equations in vm variables (can be divided into subsystems).
® Once S is known, the central polynomials can efficiently be found.
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Efficient Key-Recovery

In two variants of MQ-Sign, the coefficients in F(zk) are chosen sparsely.

This removes unknown variables from the system

P = (PY + PYITYS, + F.

0 0
k k J(k (K : : 5 :
P§,3+1 T P£,3+m pl(,l) s pl(,v) Sit st Sim ()
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public public secret 0 0 0

secret, but known structure

® Collect linear equations for all k € {1,..., m} polynomials.
® Obtain system of mv(m — 1) equations in vm variables (can be divided into subsystems).
® Once S is known, the central polynomials can efficiently be found.

The constructed key is actually not equivalent to a UOV key, it is weaker!
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