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Recall the MinRank problem

MinRank MR(n,m, r ,M1, . . . ,Mm)

Input: n,m, r ∈ N, and M1, . . . ,Mm ∈ Mn(Fq).

Question: Find – if any – a nonzero m-tuple (λ1, . . . , λm) ∈ Fm
q s.t.:

Rank

(
m∑
i=1

λi Mi

)
⩽ r .

[Courtois ’01], [Buss & Shallit ’99]
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How do we use MinRank in cryptanalysis?

P = (p1, p2, . . . , pm) - public polynomials,

P1,P2, . . . ,Pm - matrix representations of the coordinates of P.

r n−r r n−r

Rank

(
m∑
i=1

λi Pi

)
⩽ r

Rank

(
m∑
i=1

λ′
i Pi

)
⩽ r

S is determined by

Ker

(
m∑
i=1

λi Pi

)
∩Ker

(
m∑
i=1

λ′
i Pi

)

· · ·

p1 p2 p3 pm−1 pm
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Baby example UOV

Similar approach works for UOV, although it is not a result of “rank defect” (at leaset not so obvious)

f1(x1, . . . , x6) = x1x2 + x2x4 + x3x6 + x4x6 + x5x6 + x6

f2(x1, . . . , x6) = x1x4 + x3x4 + x3x6 + x4x6 + x6

f3(x1, . . . , x6) = x2x3 + x3x5 + x2x4 + x2x6 + x4x5 + x1x6 + x4x6 + x5x6

S
′
: x4 → x4 + x6

x2 → x2 + x5

After change of variables, we have separated (some) of the oil space(x5, x6) :

f1(x1, . . . , x6) = x1x2 + x1x5 + x2x4 + x2x6 + x4x5 + x3x6 + x4x6

f2(x1, . . . , x6) = x1x4 + x1x6 + x3x4 + x4x6

f3(x1, . . . , x6) = x2x3 + x2x4 + x4x6 + x1x6 + x6
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UOV partial revealing of structure (“good keys”)

UOV

fs(x) =
∑

i∈V ,j∈V
γ
(s)
ij xixj +

∑
i∈V ,j∈O

γ
(s)
ij xixj ,

Good Keys for UOV
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Rainbow partial revealing of structure (“good keys”)

Rainbow before and after applying an input and output change of basis

(separating a a good key)

Good key for Rainbow -
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Measuring linear spaces



Linear spaces of (n,m)-functions

• Differential of f : Dw f (x) = f (x + w)− f (x)− f (w) + f (0)

• Linearity for (n,m) functions f : Fn
q → Fm

q defined already 1992 by Nyberg

• w ∈ Fn
q - linear structure of f if

Dw f (x) = 0 ∀ x ∈ Fn
q .

• Linear space of f - generated by the linear structures of f .

Quadratic form f : Dw f (x) = w⊺Fx , for a symmetric matrix F,

• Ker(F) - linear space of f .

[Nyberg92] Quadratic (n,m)-function f :

• Linearity - measured using the smallest rank r of any of the components w⊺ · f .

Maximum nonlinearity:

• Bent functions - Rank(Fw ) = n, even n, m ⩽ n/2,

• Almost bent (AB) functions - Rank(Fw ) = n − 1, odd n = m.
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Example 1:

f :

f1 = x1x2 + x3

f2 = x1x3 + x2 + x3

f3 = x2x3 + x1 + x2 + x3

f4 = x1x2

(1, 0, 0, 1)⊺ ·f is linear

f ′ :

f ′1 = x1x2 + x3

f ′2 = x1x2 + x2 + x3

f ′3 = x2x3 + x1 + x2 + x3

f ′4 = x1x2 + x2x3

(1, 1, 0, 0)⊺ ·f ′ is linear

(1, 0, 1, 1)⊺ ·f ′ is linear

Both have maximum linearity, but f ′ is linear on a larger space!

It is an important measure!
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Oil & Vinegar maps

f :

f1(x1, x2, x3, x4) = x1x3 + x2x4 + x1x2 + x3

f2(x1, x2, x3, x4) = x2x3 + x1x4 + x2x4 + x3

f is linear on the oil subspace (when you fix the vinegar variables)!

f1(c1, c2, x3, x4) = c1x3 + c2x4 + c1c2 + x3

f2(c1, c2, x3, x4) = c2x3 + c1x4 + c2x4 + x3
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(s, t)–linearity of quadratic (n,m) function f

Boura and Canteaut FSE13:

f is said to be (s, t)–linear if there exist linear subspaces

V ⊂ Fn
q with Dim(V ) = s, W ⊂ Fm

q with Dim(W ) = t, s.t.

∀ w ∈ W , w⊺ · f is linear on all cosets of V .

• fW corresponding to all w⊺ · f , w ∈ W can be written as

fW (x , y) = M(x) · y + G(x)

where Fn
q = U ⊕ V , G : U → Ft

q and M(x) is a t × s matrix

with rows - components of linear functions over U.

• for w ∈ W , Daw
⊺ ·f (b) = 0, ∀ a, b ∈ V .

• for w ∈ W , fW (0, y) = M(0) · y + G(0) = 0, ∀ (0, a) ∈ V - all components in W vanish on

the V space
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Example:

f1(x1, x2, x3, x4) = x1x3 + x2x4 + x1x2 + x3

f2(x1, x2, x3, x4) = x2x3 + x1x4 + x2x4 + x3

f is (2, 2)–linear,

V = ⟨(0, 0, 1, 0), (0, 0, 0, 1)⟩, W = ⟨(1, 0), (0, 1)⟩

f1(x1, x2, x3, x4) = x1x3 + x1x4 + x2

f2(x1, x2, x3, x4) = x1x2 + x1x4 + x1x3

f3(x1, x2, x3, x4) = x1x3 + x2x3 + x2x4

f is (3, 2)–linear,

V = ⟨(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)⟩, W = ⟨(1, 0, 0), (0, 1, 0)⟩
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Back to UOV - what does the above mean?

Daf (b) = 0, ∀ a, b in the oil space O.

f (0, a) = 0,∀ a ∈ O - the oil and vinegar map vanishes on the oil space!

Basis for the new definition of UOV [Beullens21]

A consequence? - Reconciliation Attack [Ding et al.]

In a nutshel: Recover (s,m) linearity of the public P : P1, . . . ,Pm

Solve:

x (j)Pix
(k) = 0, i ∈ {1, ...,m}, j , k ∈ {1, ..., s}, j < k

x (k)P̃ix
(k) = 0, i ∈ {1, ...,m}, k ∈ {1, ..., s},

in the unknown basis vectors x (j) of the oil space O,

where Pi := P̃i + P̃⊺
i .
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Reconciliation attack [Ding et al.]

As given in [SG14]:

1. Solve the quadratic

x (j)Pix
(k) = 0, i ∈ {1, ...,m}, j , k ∈ {1, ..., c}, j < k

x (k)P̃ix
(k) = 0, i ∈ {1, ...,m}, k ∈ {1, ..., c},

in the unknown basis vectors x (k) of the space O.

[ m
(
c+1
2

)
quadratic and bilinear equations (n −m)c variables

We must choose c s.t. m
(
c+1
2

)
≥ (n −m)c (typically at least 2)]

2. Then solve the linear

x (j)Pix
(k) = 0, i ∈ {1, ...,m}, j ∈ {1, ..., c}, k ∈ {c + 1, ...,m}, j < k

in the unknown basis vectors x (k) of the oil space O.

[For first k, mc linear equations (n −m) variables

Works if m(c + 1) ≥ n,

otherwise plug in in step 1 and solve easier quadratic system]
13 / 23



Making the reconciliation attack practical

Important about the attack:

• If c taken big enough in the first step, second step is always polynomial

• First step is the expensive one

• Questions:

• Can we have a polynomial second step for smaller c?
• Yes, only one vector seems to be enough!
• Can we find easier (than step 1) vectors in the oil space?
• Yes, intersection attack!

14 / 23



One oil vector breaks UOV!

• Shown in [Aulbach, Campos, Krämer, S, Stöttinger ’23]

• Simpler view in [Pébereau’24]
• Assume n ≤ 3m
• Assume an oil vector o is known
• Recall that Do f (b) = 0, ∀ b in the oil space O.

so the oil space O lives in the kernel of the differential Do

|Ker(Do)| = n −m

• Restrict the public key to Ker(Do) using a basis matrix SKer

P|Ker(Do ) = P ◦ SKer

• Obtain a (n −m,m) UOV instance
• Unknown oil space O ′ can be found by Kipnis-Shamir attack ’98 (becomes polynomial)
• Alternatively, use Step 2 of reconciliation attack for c = 1 (becomes polynomial)

• Go back to original UOV instance
• Basis of unknown oil space BO = SKer · BO′
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Finding one oil vector: enhancement of Kipnis-Shamir attack ’98

• Kipnis-Shamir attack ’98 - Broke Oil & Vinegar by Patarin (n = 2m)

• Recall that Do f (b) = 0, ∀ b in the oil space O.

• In matrix form

o(j)Pio
(k) = 0, i ∈ {1, ...,m}, j , k ∈ {1, ...,m}

Pi · O ⊂ O⊥

• |Pi · O| = m,
∣∣O⊥∣∣ = n −m

• |Pi · O ∩ Pj · O| ≥ |Pi · O|+ |Pj · O| −
∣∣O⊥∣∣ = 3m − n

16 / 23
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Intersection attack [Beullens ’20]

• Focus on n < 3m

• We want to find x in the intersection Pi · O ∩ Pj · O
• But then P−1

i x ∈ O and P−1
j x ∈ O are two oil vectors

• We can do the reconciliation attack but on steroids!

• Fix 3m − n coordinates of x and solve the quadratic system

(P−1
1 x)⊤PiP

−1
2 x = 0, i ∈ {1, ...,m}

(P−1
1 x)⊤P̃i (P

−1
1 x) = 0, i ∈ {1, ...,m}

(P−1
2 x)⊤P̃i (P

−1
2 x) = 0, i ∈ {1, ...,m}

• 3m equations and 2n − 3m variables

• We now have two oil vectors, the rest is easy!
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Now, let’s think again about our measures of linearity

Better said, let’s take a different perspective...

So far we considered m symmetric matrices representing our polynomials.

Like this:

But, this is also good. . . And this!

• This is different tensor view, but the same object!

• Instead of array of two-dimensional matrices, we look at it as a three-dimensional qube!
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How does this change perspective?

Recall, UOV has an important hidden linear spaces (the oil space). . .

But no rank defects!

Sure?

• In the second and third view, we observe a rank defect!

• We can use (Rectangular) MinRank!

• Beullens ’22 used it to improve the analysis on UOV and Rainbow

• Important takeaway: The two types of important linear spaces can be characterized in the

same way!
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Equivalent keys used wrong

• MQ-Sign - submitted to the Korean PQC competition for standardization

• Now a finalist

• MQ-Sign design principle:

• UOV map
• Sparse polynomials to reduce key size - only v coefficients per polynomial
• Four variants with different level of sparsness
• Equivalent keys technique to reduce key size

• Polynomial time attack [AST23] on the sparse variants

• Result of flawed use of equivalent keys
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MQ-Sign Central map

F (1)
V =

v∑
i=1

γ
(1)
i xix(i mod v)+1 → F(1)

V =



0 γ
(1)
1 0 · · · 0

0 0 γ
(1)
2 · · · 0

...
...

. . .
...

0 0 0 · · · γ
(1)
v−1

γ
(1)
v 0 0 · · · 0



F (2)
V =

v∑
i=1

γ
(2)
i xix(i+1 mod v)+1 → F(2)

V =



0 0 γ
(2)
1 · · · 0

...
...

. . .
...

0 0 0 · · · γ
(2)
v−2

γ
(2)
v−1 0 0 · · · 0

0 γ
(2)
v 0 · · · 0


...
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Derive Linear Equations from Key Equation

Recall that the key equation P = F ◦ S translates to the matrix equations P(k) = S⊤F(k)S, i.e.(
P(k)

1 P(k)
2

0 P(k)
4

)
= Upper

((
I 0

S⊤
1 I

)(
F(k)
1 F(k)

2

0 0

)(
I S1

0 I

))

=

(
F(k)
1 (F(k)

1 + F(k)⊤
1 )S1 + F(k)

2

0 Upper (S⊤
1 F

(k)
1 S1 + S⊤

1 F
(k)
2 )

)
.

From the two upper blocks, as previous, we obtain the equations

P(k)
1 = F(k)

1 and

P(k)
2 = (P(k)

1 + P(k)⊤
1 )S1 + F(k)

2 .

• The second is a system of linear equations in the entries of the secret S1

• Still, not possible to determine them, due to the secret coefficients in F
(k)
2
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Efficient Key-Recovery

In two variants of MQ-Sign, the coefficients in F(k)
2 are chosen sparsely.

This removes unknown variables from the system

P(k)
2 = (P(k)

1 + P(k)⊤
1 )S1 + F(k)

2 .


p
(k)
1,v+1 · · · p

(k)
1,v+m

...
...

p
(k)
v,v+1 · · · p

(k)
v,v+m


︸ ︷︷ ︸

public

=


p
,(k)
1,1 · · · p

,(k)
1,v

...
...

p
,(k)
v,1 · · · p

,(k)
v,v


︸ ︷︷ ︸

public


s11 · · · s1m
...

...

sv1 · · · svm


︸ ︷︷ ︸

secret

+



0 γ
(k)
1 · · · 0

...
...

. . .
...

0 0 · · · γ
(k)
m−1

γ
(k)
m 0 · · · 0
...

. . . · · · 0

0 0 · · · 0


︸ ︷︷ ︸

secret, but known structure
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
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secret, but known structure

• Collect linear equations for all k ∈ {1, . . . ,m} polynomials.

• Obtain system of mv(m − 1) equations in vm variables (can be divided into subsystems).

• Once S is known, the central polynomials can efficiently be found.

The constructed key is actually not equivalent to a UOV key, it is weaker!
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︸ ︷︷ ︸

secret, but known structure

• Collect linear equations for all k ∈ {1, . . . ,m} polynomials.

• Obtain system of mv(m − 1) equations in vm variables (can be divided into subsystems).

• Once S is known, the central polynomials can efficiently be found.

The constructed key is actually not equivalent to a UOV key, it is weaker!
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