
Multivariate Fiat-Shamir signatures

SLMath summer school:

Introduction to Quantum-Safe Cryptography (IBM Zurich)

Simona Samardjiska

July, 2024

Institute for Computing and Information Sciences

Radboud University

1



Recall the MQ problem from last time

Computational MQ problem

Given: m multivariate polynomials p1, p2, . . . , pm ∈ Fq[x1, . . . , xn] of degree 2

Find: (if any) a vector (u1, . . . , un) ∈ Fn
q such that

p1(u1, . . . , un) = 0

p2(u1, . . . , un) = 0

. . .

pm(u1, . . . , un) = 0

▶ Recall also that traditionally MQ schemes are ad-hoc

• the hard problem is not the MQ problem, and not only the MQ problem

▶ What does it take to get a provably secure MQ scheme?

• MQDSS: first signature with (lossy) ROM reduction to MQ

• SOFIA: first signature with (lossy) QROM reduction to MQ
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Some brainstorming in Sofia with Andy and Peter

▶ Lack of provable MQ signature

▶ Inefficient signatures from 3-pass IDS [Sakumoto et al. ’11]

• big soundness error (2/3)

▶ Can we gain smth. if we consider signatures from 5-pass IDS?

• smaller soundness error ( q+1
2q over Fq) ⇒ smaller signatures

• FS transform for 5-pass already available [El Yousfi ’12]

▶ loose reduction in the ROM (as for 3-pass [Pointcheval & Stern ’96])
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Canonical Identification Schemes

P, sk V, pk

com←R P0(sk) com

ch←R ChS(1k)ch

resp← P1(sk, com, ch) resp

b ← Vf(pk, com, ch, resp)

Informally:

(1) Prover commits to some (randomized) value derived from sk

(2) Verifier picks a challenge ‘ch’

(3) Prover computes response ‘resp’

(4) Verifier checks if response matches challenge
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Properties of Canonical 3-pass IDS

P, sk V, pk

com←R P0(sk) com

ch←R ChS(1k)ch

resp← P1(sk, com, ch) resp

b ← Vf(pk, com, ch, resp)

▶ Special soundness

There exists knowledge extractor K s.t. given two valid transcripts:

trans = (com, ch, resp), trans′ = (com, ch′, resp′), ch ̸= ch′,

extracts the secret sk with non-negligible probability

▶ (statistical) Honest-Verifier Zero-Knowledge

There exists a PPT algorithm S, called the simulator, such that the statistical distance between

the real transcript and the simulated transcript is negligible in k.
5



The Fiat-Shamir transform

IDS P

r

V

r

com← P0

r

(sk) com

ch←R ChS

r

(1k)

ch←R ChS

r

(1k)ch

resp← P1

r

(sk, com, ch) resp

b ← Vf

r

(pk, com, ch, resp)

↓ ↓ ↓
FS signature

Signer

com← P0(sk)

ch← H(m, com)

resp← P1(sk, com, ch)

output : σ = (com, resp)

Verifier

ch← H(m, com)

b ← Vf(pk, com, ch, resp)

output : b
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Security of FS signatures [Pointcheval & Stern ’96]

IDS

Special soundness

+

HVZK

FS signature

Secure under key-only attack

eu-cma secure

A (pk)

O

σ = (com, ch, resp)

σ′ = (com, ch′, resp′)Fork.lemma

trans = (com, ch, resp)

trans′ = (com, ch′, resp′)
K

sk
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Security of FS signatures [Pointcheval & Stern ’96]
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HVZK
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Canonical 5-pass IDS

P V

com← P0(sk) com

ch1 ←R ChS1(1
k)ch1

resp1 ← P1(sk, com, ch1) resp1

ch2 ←R ChS2(1
k)ch2

resp2 ← P2(sk, com, ch1, resp1, ch2) resp2

b ← Vf(pk, com, ch1, resp1, ch2, resp2)
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The Fiat-Shamir transform on 5-pass IDS

IDS P V

com← P0(sk) com

ch1 ←R ChS1(1
k)ch1

resp1 ← P1(sk, com, ch1) resp1

ch2 ←R ChS2(1
k)ch2

resp2 ← P2(sk, com, ch1, resp1, ch2) resp2

b ← Vf(pk, com, ch1, resp1, ch2, resp2)

↓ ↓ ↓
FS signature

Signer

com← P0(sk)

ch1 ← H1(m, com)

resp1 ← P1(sk, com, ch1)

ch2 ← H2(m, com, ch1, resp1)

resp2 ← P2(sk, com, ch1, resp1, ch2)

output : σ = (com, resp1, resp2)

Verifier

ch1 ← H1(m, com)

ch2 ← H2(m, com, ch1, resp1)

b ← Vf(pk, com, ch1, resp1, ch2, resp2)

output : b
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Sakumoto-Shirai-Hiwatari 5-pass IDS

P(F, v, s) V(F, v)

r0, t0 ←R Fn
q, e0 ←R Fm

q

r1 ← s− r0

c0 ← Com(r0, t0, e0)

c1 ← Com(r1,G(t0, r1) + e0)
(c0, c1)

α←R Fqα

t1 ← αr0 − t0

e1 ← αF(r0)− e0 resp1 = (t1, e1)

ch2 ←R {0, 1}ch2

If ch2 = 0, resp2 ← r0

Else resp2 ← r1
resp2

If ch2 = 0, Parse resp2 = r0, check

c0
?
= Com(r0, αr0 − t1, αF(r0)− e1)

Else Parse resp2 = r1, check

c1
?
= Com(r1, α(v− F(r1))− G(t1, r1)− e1) 11



Sakumoto-Shirai-Hiwatari IDS

▶ Smaller soundness error ( q+1
2q over Fq) ⇒ smaller signatures

▶ Key technique: cut-and-choose for MQ

▶ Bilinear map G(x, y) = F(x+ y)− F(x)− F(y)

• Split s and F(s) into r0, r1 and F(r0),F(r1)

▶ Since then s = r0 + r1 ⇒ F(s) = G(r0, r1) + F(r0) + F(r1)

• Split r0 and F(r0) further into t0, t1 resp. e0, e1

• r0 = t0 + t1
• F(r0) = e0 + e1

▶ Using bilinearity, v = (G(t0, r1) + e0) + (F(r1) + G(t1, r1) + e1)

▶ Result: reveal either r0 or r1, and (t1, e1)

▶ Zero knowledge property satisfied
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Sakumoto et al. 5-pass IDS

The extractor K needs 4 valid transcripts!

(com, ch1, resp1, ch2, resp2)

(com, ch1, resp1, ch
′
2, resp

′
2)

(com, ch′1, resp
′
1, ch2, resp

′′
2 )

(com, ch′1, resp
′
1, ch

′
2, resp

′′′
2 )

ch2

ch1

ch′2
com

ch2

ch′1
ch′2

▶ Focus attention on 5-pass IDS with second challenge space |ChS2| = 2

• Sakumoto et al. 5-pass IDS is such

• Most in the literature are such
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Next step ...

MQ signatures in the QROM

What is the problem with FS proof in the QROM?

▶ We need to see the signature σ before rewinding

▶ We need to see the oracle inputs

▶ Seeing (measuring) destroys the quantum state

▶ The proof fails terribly

A solution: Unruh transform [Unruh ’14] adapted for q2 IDS

▶ Online extractability

▶ We can extract the witness without rewinding

▶ Enough transcripts directly available

We proposed SOFIA - MQ signature secure in the QROM
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MQDSS vs SOFIA

Sec. q
n

(= m)
r

pk

(bytes)

sk

(bytes)

Signature

(bytes)

MQDSS-31-64

(AC ’16)
128 (ROM) 31 48 269 72 64 40952

SOFIA-4-128

(PKC ’18)
128 (QROM) 4 128 438 64 32 126176

▶ SOFIA still comparable to Picnic (with QROM proof),

▶ but much slower than SPHINCS + and lattice based schemes

NIST parameter sets MQDSS

Sec.

cat.
q

n

(= m)
r

pk

(bytes)

sk

(bytes)

Signature

(bytes)

MQDSS-31-48 (Round 2) 1-2 31 48 135 46 16 20854

MQDSS-31-64 (Round 2) 3-4 31 64 202 64 24 43728
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An attack on MQDSS

▶ August 2019, Daniel Kales and Greg Zaverucha - forgery in approx. 295 hash calls for

MQDSS-31-48

▶ Can be mitigated by ≈ 1.4×(number of rounds)

▶ Proof still valid!

• Attack is result of not taking into account non-tightness of proof for choosing

parameters

▶ New parameters after attack (estimate):

Sec. cat. q n r pk sk Signature

MQDSS-31-48 (new) 1-2 31 48 184 46B 16B 28400B

MQDSS-31-48 (Round 2) 1-2 31 48 135 46B 16B 20854B

MQDSS-31-64 (new) 3-4 31 64 277 64B 24B 59928B

MQDSS-31-64 (Round 2) 3-4 31 64 202 64B 24B 43728B
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Developments during the NIST competition

▶ Fiat-Shamir shown secure in the QROM - SOFIA becomes superfluous

▶ MQDSS proven secure in the QROM - still, sizes are huge

▶ several approaches that drastically improve the signature size

▶ Mudfish [Beullens, Eurocrypt ’20]

• Idea to reduce soundness error by introducing a preprocessing phase with a trusted Helper

• And then have a regular Σ-protocol (satisfies completeness, special soundness, HVZK)

• Takes inspiration from SOFIA and MPC-in-the-head [Katz, Kolesnikov, Wang, ’18]

▶ MEDS, ALTEQ - Fiat-Shamir Goldreich-Micali-Wigderson scheme based on variants of

Isomorphism of Polynomials

▶ MQOM - Fiat-Shamir based on MPC-in-the-head paradigm
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Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich–Micali–Wigderson ’91]:

Let ϕ be an isomorphism s.t. O1 = ϕ(O0).

Given O0,O1, the prover P wants to prove to the verifier V knowledge of ϕ without revealing any

information about it

O0 O′

O1

ϕ

ϕ0

ϕ1

P(O0,O1, ϕ) V(O0,O1)

com← O′
com

ch←R {0, 1}ch

resp← ϕch resp

O′ ?
= ϕch(Och)
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Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(O0,O1):

Given O0 and O1, find (if any) an isomorphism ϕ s.t. O1 = ϕ(O0)

▶ Isomorphism of polynomials - Patarin’s signature, 1998

▶ Quasigroup isotopy - Identification scheme, Denes, 2001

▶ Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, De Feo et al.

▶ Code equivalence - LESS - Biasse et al. 2020, LESS-FM - Barenghi et al. 2021

▶ Alternate trilinear form equivalence - Tang et al. 2022

▶ Lattice isomorphism - Ducas and van Woerden 2022

▶ Matrix code equivalence - with Tung Chou, Ruben Niederhagen, Edoardo Persichetti,

Tovohery Hajatiana Randrianarisoa, Lars Ran, Krijn Reijnders, Monika Trimoska , 2022

▶ . . .
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The Matrix Code Equivalence Problem

Matrix code - a subspace ofMm×n(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A− B)

Matrix Code Equivalence (MCE) problem [Berger,2003]

Input: Two k-dimensional matrix codes C,D ⊂Mm,n(q)

Question: Find – if any – A ∈ GLm(q),B ∈ GLn(q) (an isometry) s.t. for all C ∈ C, it holds
that

ACB ∈ D

Related problems

▶ Matrix Codes Right (Left) Equivalence problem (MCRE) – A (B) is trivial

▶ Fqm -linear codes – MCE reduces to MCRE

20
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Known results - relations to other problems

Linear Code

Permutation

Equiv.

Graph

Isomorphism

Permutation

Equivalence

with zero

Hull

Linear code

Monomial

Equiv.

If q = nO(1)

Matrix Code

Equivalence[CDAG2021]

Quadratic

Maps Linear

Equivalence

[PGC98]

[RST22]

Alternating

Trilinear Form

Equivalence

[GQT21]
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Quadratic Maps Linear Equivalence (QMLE) problem

Introduced by Patarin 1996 as Isomorphism of Polynomials (IP) problem for building an identification

scheme and FS signature!

Quadratic Maps Linear Equivalence (QMLE) problem

Input: Two k-tuples of quadratic multivariate polynomials F , P ∈ Fq[x1, . . . , xn]
k

Question: Find – if any – invertible matrices S,T such that

P(x) = TF(Sx).

Related problems

▶ Isomorphism of Polynomials with one secret (IP1S), when T is trivial - easy

▶ homogenous version hQMLE - hard

▶ inhomogenous version - easy (heuristic result [FP06])
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Alternating trilinear form equivalence problem (ATFE)

Alternating trilinear form: ϕ(x, y, z) =
∑

1⩽i<j<s⩽n

cijs

∣∣∣∣∣∣∣
xi yi zi

xj yj zj

xs ys zs

∣∣∣∣∣∣∣ where cijs ∈ Fq.

▶ Can be stored using
(
n
3

)
entries: one for each cijs coefficient

Alternating trilinear form equivalence (ATFE) problem

Input: Two alternating trilinear forms ϕ, ψ ∈ Fq[x, y, z].

Question: Find – if any – invertible A such that ψ(x, y, z) = ϕ(Ax,Ay,Az).

▶ Used by Tang et al. ’22 to build a signature scheme with competitive signature sizes

▶ Shown to be equivalent to hQMLE (Grochow et al. ’21)
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MCE, QMLE and ATFE look very similar!

Matrix codes:

. .
.
Dk

D3

D2

D1

. .
.
Ck

C3

C2

C1

A
B

MCE:

▶ matrix codes of rectangular matrices

▶ isometry (A,B)
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MCE, QMLE and ATFE look very similar!

Systems of polynomials in matrix representation:

. .
.
pk

p3
p2

p1

. .
.
fk

f3
f2

f1

A A⊤

hQMLE:

▶ matrix codes of symmetric matrices

▶ isometry (A,A⊤)

▶ hQMLE can be seen as MCE, and vice versa

25
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MCE, QMLE and ATFE look very similar!

Trilinear forms in matrix representation:

. .
.
pk

p3
p2

p1

. .
.
fk

f3
f2

f1

A A⊤

ATFE:

▶ matrix codes of skew symmetric matrices

▶ isometry (A,A⊤)

▶ ATFE can be seen as MCE, and as hQMLE (and vice versa)

We will come back to cryptanalysis of this problem!
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The basic protocol is not very eficient

O0 O′

O1

ϕ

ψ0

ψ1

P(O0,O1, ϕ) V(O0,O1)

com← O′

,O′′, . . . ,O(r)

com

ch←R {0, 1}

r

ch←R {0, 1}

r

ch

resp← ψch

1
, ψch2 , . . . , ψchr

resp

O′ ?
= ψch

1

(Och

1

)

, . . . ,O(r) ?
= ψchr (Ochr )

▶ Challenge space is of size 2 ⇒ Soundness error is 1/2

▶ For security of λ bits, needs to be repeated r = λ times!

▶ ⇒ Signature contains λ isometries (from λ rounds)

▶ ⇒ All operations in signing and verification need to be repeated λ times
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Optimization 1: Make the challenge space bigger (Multiple public keys)

O0 O′

O1 O2 . . . ON

ϕ1 ϕ2 ϕi
ϕN

ψ0

ψ1 ψ2 ψi
ψN

P(O0, . . . ,ON , ϕ1, . . . , ϕN) V(O0, . . . ,ON)

com← O′

,O′′, . . . ,O(r)

com

ch←R {0,N − 1}

r

ch←R {0,N − 1}

r

ch

resp← ψch

1
, ψch2 , . . . , ψchr

resp

O(i) ?
= ψchi (Ochi )

▶ Challenge space is now of size N ⇒ Soundness error is 1/N

▶ For security of λ bits, needs to be repeated r = λ
log N

times!

▶ ⇒ Signature contains λ
log N

isometries

▶ ⇒ All operations in signing and verification need to be repeated λ
log N

times

▶ There is a cost - N-fold increase in public and private key

▶ Always necessary to find the best trade-off
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log N

times

▶ There is a cost - N-fold increase in public and private key

▶ Always necessary to find the best trade-off
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Optimization 2: Reduce signature size by using seeds

O0 O′

O1 O2 . . . ON

ϕ1 ϕ2 ϕi
ϕN

ψ0

ψ1 ψ2 ψi
ψN

P(O0, . . . ,ON , ϕ1, . . . , ϕN) V(O0, . . . ,ON)

com← O′

,O′′, . . . ,O(r)

com

ch←R {0,N − 1}

r

ch←R {0,N − 1}

r

ch

resp← ψch

1
, ψch2 , . . . , ψchr

resp

O(i) ?
= ψchi (Ochi )

▶ The map ψ0 is chosen at random ⇒ one can include only seed in signature

• ψ0 can be reconstructed from the seed

▶ Problem: This works only for ch = 0, and probability of choosing challenge 0 is 1/N

• ⇒ not a big benefit in general

• ⇒ signature is not of constant size

▶ Idea: Always have a fixed number M of 0 challenges

• We need a special hash function that always produces fixed weight outputs

• Always necessary to find the best trade-off
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So how better are these schemes in terms of performance?

For example, MEDS:

MEDS q
n

(≈ m)
r

pk

(bytes)

Signature

(bytes)

level 1 4093 25 144 21595 5456

level 2 4093 34 208 55520 10786

level 3 4093 44 272 122000 21052

Important to note:

▶ QMLE/MCE still not so well understood

▶ Not NP-hard but likely still hard

▶ Secure practical parameters significantly changed in the last few years, as our

understanding improved
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Solving matrix code equivalence

problems



Solving matrix code equivalence problems

Several approaches:

▶ Graph-based techniques

▶ Algebraic models

▶ Leon-like approach (graph-based+algebraic)
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Graph-based algorithm for QMLE

▶ [Faugére, Peret, 2006] – inhomogenous version is easy (O(n9) heuristically)

▶ [Bouillaguet, Fouque & Véber, 2013] – Graph based approach O(q
2
3
nn9)

• Crucial observation: One collision point b = aS turns a hard homogenous instance into

easy inhomogenous one

if b = aS, then P(x+ a) = F(xS+ b)T.

⇒ P ′(x) = P(x+ a),F ′(x) = F(x+ b) is easy instance!

• Problem is reduced to finding the collision
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Algebraic modelling of MCE - the straightforward way

For (C(1), . . . ,C(k)) and (D(1), . . . ,D(k)) bases of C and D, find invertible A,B and T = (tij) s.t.:∑
1⩽s⩽k

trsD
(s) = AC(r)B, ∀r , 1 ⩽ r ⩽ k

▶ Directly: bilinear system of knm eqns in m2 + n2 + k2 vars (bilinear aijbi′j′ , linear trs)

• Security estimates too high

▶ Coefs of Ai and Aj (B i and B j) don’t appear in same equation

▶ Consider only a small number α of rows of A, i.e.,∑
1⩽s⩽k

trsD
(s)
i = Ai C

(r)B, ∀r , i , 1 ⩽ r ⩽ k, 1 ⩽ i ⩽ α.

▶ Guess αm coefs of Ai , and solve linear system of αkn equations in n2 + k2 variables

▶ For m = n = k, α = 2 is enough → complexity is O(q2nn6)
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Improved Algebraic modelling of MCE

Make use of coding theory!

▶ G and G′ – the k ×mn generator matrices of C and D
• “Flatten” the matrices into vectors

▶ G′⊥ - the generator matrix of the dual code of D

▶ Take G̃(A,B) - generator matrix of ACB (i.e. D) for A and B with unknown coefficients

▶ Construct the system:

G′⊥ · G̃(A,B)⊤ = 0,

of (mn − k)k bilinear equations in only m2 + n2 variables

• we got rid of t2 variables!

▶ Solve system with Bilinear XL for example

▶ Dimension of code – crucial for complexity

• smallest for k = mn/2, and grows as k reduces or grows
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• smallest for k = mn/2, and grows as k reduces or grows
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Further improvments of the algebraic modelling of MCE

Trilinear form view:

C(Ax,By,Tz) = D(x, y, z)

C(Ax,By, z) = D(x, y,T−1z) C(x,By,Tz) = D(A−1x, y, z) C(Ax, y,Tz) = D(x,B−1y, z)

G′⊥
z · G̃⊤

z (A,B) = 0, G′⊥
x · G̃⊤

x (B,T) = 0, G′⊥
y · G̃⊤

y (A,T) = 0,
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Further improvments of the algebraic modelling of MCE

G′⊥
z · G̃⊤

z (A,B) = 0, (1)

G′⊥
x · G̃⊤

x (B,T) = 0, (2)

G′⊥
y · G̃⊤

y (A,T) = 0. (3)

▶ A total of (mn − k)k + (nk −m)m + (mk − n)n equations in n2 +m2 + k2 variables

▶ The system is not semi-regular though!

• Syzygies in degree 3 from linear combination of types tij · (1), aij · (2), bij · (3)

▶ We can estimate the Hilbert series and complexity for solving using Bilinear XL

n = m = k plain improved

14 169 148

22 255 218

30 349 299
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Summary of the course

▶ Monday - Designs

• General

• Classic designs

▶ Tuesday - Design and general MQ solving techniques

• Key size optimization techniques

• Algorithms for solving the MQ problem

▶ Wednesday - Cryptanalysis

• MinRank

• Equivalent keys attacks

▶ Thursday - Cryptanalysis

• Attacks on UOV

▶ Friday - Provably secure designs

• Fiat-Shamir signatures MQDSS, SOFIA, MEDS
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Thank you for listening!

And attending this course!
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