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Recall the MQ problem from last time

Computational MQ problem

Given: m multivariate polynomials p1, p2, ..., pm € Fg[xi, ..., xn] of degree 2

Find: (if any) a vector (uy,. .., u,) € Fg such that
pl(ul,...,u,,) =0
p2(u1,y...,un)= 0

pm(Ui, ..., us) = 0

» Recall also that traditionally MQ schemes are ad-hoc
e the hard problem is not the MQ problem, and not only the MQ problem
» What does it take to get a provably secure MQ scheme?

e MQDSS: first signature with (lossy) ROM reduction to MQ
e SOFIA: first signature with (lossy) QROM reduction to MQ



Some brainstorming in Sofia with Andy and Peter

» Lack of provable MQ signature
> Inefficient signatures from 3-pass IDS [Sakumoto et al. '11]
e big soundness error (2/3)
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Canonical ldentification Schemes

P, sk V, pk
com < Po(sk) S
_
ch ch g ChS(1%)
—
resp < Pi(sk, com, ch) —
_

b « Vf(pk, com, ch, resp)

Informally:

1
2
3
4

Prover commits to some (randomized) value derived from sk
Verifier picks a challenge ‘ch’

Prover computes response ‘resp’

(
(
(
(

~— — ~— ~—

Verifier checks if response matches challenge



Properties of Canonical 3-pass IDS

P, sk V, pk
com <—g Po(sk) com
_—
ch ch «— ChS(1%)
-
resp < P1(sk,com, ch) resp
_—

b < Vf(pk, com, ch, resp)

» Special soundness
There exists knowledge extractor K s.t. given two valid transcripts:

trans = (com, ch, resp), trans’ = (com,ch’,resp’), ch # ch’,

extracts the secret sk with non-negligible probability

> (statistical) Honest-Verifier Zero-Knowledge
There exists a PPT algorithm S, called the simulator, such that the statistical distance between
the real transcript and the simulated transcript is negligible in k.



The Fiat-Shamir transform

IDS | P v
com < Py (sk) com
. .
" ch <& ChS (1)
—
resp <— P1 (sk,com, ch) T
_

b < Vf (pk, com, ch, resp)




The Fiat-Shamir transform

IDS | P* V'
com < Po’(sk) com
K
o ch « ChS'(1%)
A
resp < Py’ (sk, com, ch) .
B —

b+ Vf'(pk, com, ch, resp)




The Fiat-Shamir transform

IDS [ 7’ 4

com < Po’(sk) com

-
ch < ChS"(1%) ch

P
resp <— Plr(Sky com, Ch) resp

-

b+ Vf'(pk, com, ch, resp)

FS signature

Signer Verifier

com <« Po(sk)

ch < H(m, com) ch « H(m,com)
resp « Pi(sk, com, ch) b «+ Vf(pk, com, ch, resp)

output : ¢ = (com, resp) output : b
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Security of FS signatures [Pointcheval & Stern '96]

IDS FS signature

—

Special soundness Secure under key-only attack

o
~N

A (pk) AN 0 = (com, ch, resp)

’_ ’ /
Fork.lemma o = (Coma ch’, resp )

trans = (com, ch, resp) —— K
S
trans’ = (com, ch’, resp’) —_—

K
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Security of FS signatures [Pointcheval & Stern '96]

IDS FS signature
Special soundness Secure under key-only attack
+ \
HVZK eu-cma secure
@
N
B(pk) AN g = (com,ch, resp)
s <

= A(pk) "N~ sk



Canonical 5-pass IDS

P v

com <— Po(sk) oo
Ch1 Ch1 <R ChSl(lk)
resp, < Pi(sk,com,ch;) resp,

dip chy <—r ChS,(1%)

resp, < P(sk,com, chy, resp;, chs) resp,

b « Vf(pk,com, chy, resp;, cha, resp,)




The Fiat-Shamir transform on 5-pass IDS

IDS | P %

com <— Po(sk) com
chy chy < ChS1(1¥)
resp, < P1(sk, com, chy)
chy cha < ChS2(1¥)

resp, < P2(sk, com, chy, resp;, chz)

b + Vf(pk, com, chy, resp;, chy, resp,)
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The Fiat-Shamir transform on 5-pass IDS

IDS

FS signature

P

com <— Po(sk) com
chy chy < ChS1(1¥)
resp, < P1(sk, com, chy)
chy cha < ChS2(1¥)

resp, < P2(sk, com, chy, resp;, chz)

b + Vf(pk, com, chy, resp;, chy, resp,)

Pl

Signer Verifier
com <« Po(sk) chy <~ Hi(m, com)
chy <= Hi(m, com) chy <= Ha(m, com, chy, resp,)
resp; < Pi(sk,com, chy) b < Vf(pk, com, chy, resp,, chz, resp,)
chy <= Ha(m, com, chy, resp,)
resp, <— P>(sk, com, chy, resp,, chz) output : b

output : o = (com, resp,, resp,)

10



Sakumoto-Shirai-Hiwatari 5-pass IDS

P(F,v,s)

V(F,v)

ro,to <r Fg,e0 <r Fy

< s—r

co + Com(ro, to, €p)

¢ + Com(ri,G(to,r1) + o) (0, 1)

[0}
A —

t1 < arg — to

e < OLF(I’()) — €p resp, = (t17e1)

_—
Chz
—
If ch =0, resp, 1o
Else resp, <11 =2k
_—

Oé(—RIFq

chy <—r {07 1}

If cho =0, Parse resp, = rg, check

o= Com(ro, arg — t1, aF(ro) — e1)

Else Parse resp, = r1, check

o< Com(r1, (v — F(r1)) — G(t1,r1) —e1)

11



Sakumoto-Shirai-Hiwatari IDS

» Smaller soundness error ("+ over F;) = smaller signatures

» Key technique: cut-and-choose for MQ
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Sakumoto-Shirai-Hiwatari IDS

» Smaller soundness error ("+ over F;) = smaller signatures

» Key technique: cut-and-choose for MQ

» Bilinear map G(x,y) = F(x +y) — F(x) — F(y)
e Split s and F(s) into rg,r; and F(ro), F(r1)
» Since then s = rg + ry = F(s) = G(ro,r1) + F(ro) + F(r1)
e Split rg and F(rp) further into to, t; resp. eg,e;
erp==%t+t
e F(rp) =ep+e;
» Using bilinearity, v = (G(tg,r1) + eo) + (F(r1) + G(t1,r1) + e1)
> Result: reveal either rg or r1, and (t;,e;)

» Zero knowledge property satisfied

12



Sakumoto et al. 5-pass IDS

The extractor K needs 4 valid transcripts!

(com, chy, resp;, cho, resp,) chs
(com, chi, resp,, chj, respj) chy <
(com, chi, resp}, chy, resp)’) ch)
(com, ch?, resp}, chj, resp)”) com
< Ch2
ch}
ch)
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Sakumoto et al. 5-pass IDS

The extractor K needs 4 valid transcripts!

(com, chy, resp;, cho, resp,) chs
(com, chi, resp,, chj, respj) chy <
(com, chi, resp}, chy, resp)’) ch)
(com, ch?, resp}, chj, resp)”) com
< Ch2
ch}
ch)

» Focus attention on 5-pass IDS with second challenge space |ChS;,| = 2
e Sakumoto et al. 5-pass IDS is such
e Most in the literature are such
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Next step ...

What is the problem with FS proof in the QROM?

» We need to see the signature o before rewinding
» We need to see the oracle inputs
> Seeing (measuring) destroys the quantum state

» The proof fails terribly
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Next step ...MQ signatures in the QROM

What is the problem with FS proof in the QROM?

» We need to see the signature o before rewinding
» We need to see the oracle inputs
> Seeing (measuring) destroys the quantum state

» The proof fails terribly
A solution: Unruh transform [Unruh '14] adapted for g2 IDS

» Online extractability
» We can extract the witness without rewinding

» Enough transcripts directly available

We proposed SOFIA - MQ signature secure in the QROM

14



MQDSS vs SOFIA

S . n pk sk Signature
ec (=m) ' (bytes) (bytes) (bytes)
MQDSS-31-64
(AC '16) 128 (ROM) 31 48 269 72 64 40952
SOFIA-4-128
(PKC '18) 128 (QROM) 4 128 438 64 32 126176

» SOFIA still comparable to Picnic (with QROM proof),
» but much slower than SPHINCS -+ and lattice based schemes

NIST parameter sets MQDSS

Sec. q n pk sk Signature
r
cat. (=m) (bytes) (bytes) (bytes)
MQDSS-31-48 (Round 2) 1-2 31 48 135 46 16 20854
MQDSS-31-64 (Round 2) 3-4 31 64 202 64 24 43728

15



An attack on MQDSS

» August 2019, Daniel Kales and Greg Zaverucha - forgery in approx. 2% hash calls for
MQDSS-31-48

» Can be mitigated by ~ 1.4x(number of rounds)

» Proof still valid!

e Attack is result of not taking into account non-tightness of proof for choosing
parameters
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An attack on MQDSS

» August 2019, Daniel Kales and Greg Zaverucha - forgery in approx. 2% hash calls for

MQDSS-31-48

» Can be mitigated by ~ 1.4x(number of rounds)

» Proof still valid!

e Attack is result of not taking into account non-tightness of proof for choosing

parameters

» New parameters after attack (estimate):

’ H Sec. cat. ‘ q ‘ n ‘ r pk sk Signature
MQDSS-31-48 (new) 1-2 31 48 184 46B 16B 28400B
MQDSS-31-48 (Round 2) 1-2 31 48 135 46B 16B 20854B
MQDSS-31-64 (new) 3-4 31 64 277 64B 24B 59928B
MQDSS-31-64 (Round 2) 3-4 31 64 202 64B 24B 43728B

16



Developments during the NIST competition

vV v.vyy

Fiat-Shamir shown secure in the QROM - SOFIA becomes superfluous
MQDSS proven secure in the QROM - still, sizes are huge
several approaches that drastically improve the signature size

Mudfish [Beullens, Eurocrypt '20]

e |dea to reduce soundness error by introducing a preprocessing phase with a trusted Helper
e And then have a regular X-protocol (satisfies completeness, special soundness, HVZK)
e Takes inspiration from SOFIA and MPC-in-the-head [Katz, Kolesnikov, Wang, '18]

MEDS, ALTEQ - Fiat-Shamir Goldreich-Micali-Wigderson scheme based on variants of
Isomorphism of Polynomials

MQOM - Fiat-Shamir based on MPC-in-the-head paradigm

17



Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich—Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oo).

Given Og, Oy, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

P(Oo, 01, 6) V(Op, O1)

S
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[Goldreich—Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oo).

Given Og, Oy, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

P(Oo, 01, 6) V(Op, O1)

O/

S

com + O’

ch «r {0, 1}
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Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich—Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oo).
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information about it
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v
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Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich—Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oo).

Given Og, Oy, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

o ¢0 O/ 7)(007 Olv ¢) V(OO7 Ol)
o
: com + O’ com
| >
¢, h ch < {0,1}
|
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Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich—Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oo).

Given Og, Oy, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

7)(007(917¢) V(00701)
Oo o’
: com + O’ com
| >
¢ i . i ch g {0,1}
| ———
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_—
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Zero-Knowledge Interactive Proof of knowledge from Equivalence Problems

[Goldreich—Micali-Wigderson '91]:

Let ¢ be an isomorphism s.t. O1 = ¢(Oo).

Given Og, Oy, the prover P wants to prove to the verifier V knowledge of ¢ without revealing any
information about it

2 oo & P(0Oo, 01, ¢) V(Op, O1)
:O com + O’ com
o T aernn
; o
O’ L 6en(Och)
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Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Og, O1):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O; = ¢(Op)
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Interesting concrete hard equivalence problems?

Generic hard equivalence problem EQ(Og, O1):
Given Qg and Oy, find (if any) an isomorphism ¢ s.t. O; = ¢(Op)

| 4
>
>
>
>
>
>

Isomorphism of polynomials - Patarin’s signature, 1998

Quasigroup isotopy - ldentification scheme, Denes, 2001

Isogeny on eliptic curves - SeaSign 2018, SqiSign 2020, De Feo et al.

Code equivalence - LESS - Biasse et al. 2020, LESS-FM - Barenghi et al. 2021
Alternate trilinear form equivalence - Tang et al. 2022

Lattice isomorphism - Ducas and van Woerden 2022

Matrix code equivalence - with Tung Chou, Ruben Niederhagen, Edoardo Persichetti,
Tovohery Hajatiana Randrianarisoa, Lars Ran, Krijn Reijnders, Monika Trimoska , 2022

\4
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The Matrix Code Equivalence Problem

Matrix code - a subspace of M pxn(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A — B)
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The Matrix Code Equivalence Problem

Matrix code - a subspace of M pxn(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A — B)

Matrix Code Equivalence (MCE) problem [Berger,2003]

Input: Two k-dimensional matrix codes C,D C Mm n(q)
Question: Find — if any — A € GLx(q),B € GL,(q) (an isometry) s.t. for all C € C, it holds

that

ACB €D

Related problems

» Matrix Codes Right (Left) Equivalence problem (MCRE) — A (B) is trivial
» Fgm-linear codes — MCE reduces to MCRE

20



Known results - relations to other problems

Matrix Code

Linear code

Linear Code

Permutation Equivalence

Monomial [CDAG2021]
Equiv.

Equiv.

Permutation
Equivalence

[RST22]

with zero
Hull

Quadratic

Graph [PGCY8] Maps Linear

Isomorphism

Equivalence

[6QT21]

Alternating
Trilinear Form
Equivalence
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Quadratic Maps Linear Equivalence (QMLE) problem

Introduced by Patarin 1996 as Isomorphism of Polynomials (IP) problem for building an identification
scheme and FS signature!

Quadratic Maps Linear Equivalence (QMLE) problem

Input: Two k-tuples of quadratic multivariate polynomials F, P € Fq[xi,... 7xn]k
Question: Find — if any — invertible matrices S, T such that

P(x) = TF(Sx).
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Quadratic Maps Linear Equivalence (QMLE) problem

Introduced by Patarin 1996 as Isomorphism of Polynomials (IP) problem for building an identification
scheme and FS signature!

Quadratic Maps Linear Equivalence (QMLE) problem

Input: Two k-tuples of quadratic multivariate polynomials F, P € Fq[xi,... 7xn]k
Question: Find — if any — invertible matrices S, T such that

P(x) = TF(Sx).

Related problems

» Isomorphism of Polynomials with one secret (IP1S), when T is trivial - easy
» homogenous version hQMLE - hard

» inhomogenous version - easy (heuristic result [FP06])

22



Alternating trilinear form equivalence problem (ATFE)

Xi Yi Z
Alternating trilinear form: ¢(x,y,z) = >  cis|x; y; z| where cjs € Fq.
1<i<j<s<n
Xs Ys Zs

» Can be stored using (3) entries: one for each cjs coefficient

Alternating trilinear form equivalence (ATFE) problem

Input: Two alternating trilinear forms ¢, € Fq[x,y, z].
Question: Find — if any — invertible A such that ¢(x,y, z) = ¢(Ax, Ay, Az).
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Alternating trilinear form equivalence problem (ATFE)

Xi Yi Z
Alternating trilinear form: ¢(x,y,z) = >  cis|x; y; z| where cjs € Fq.
1<i<j<s<n
Xs Ys Zs

» Can be stored using (3) entries: one for each cjs coefficient

Alternating trilinear form equivalence (ATFE) problem

Input: Two alternating trilinear forms ¢, € Fq[x,y, z].
Question: Find — if any — invertible A such that ¢(x,y, z) = ¢(Ax, Ay, Az).

» Used by Tang et al. '22 to build a signature scheme with competitive signature sizes

» Shown to be equivalent to hQMLE (Grochow et al. '21)
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MCE, QMLE and ATFE look very similar!
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Matrix codes:

Dy

D,
D,
Dy

MCE:

» matrix codes of rectangular matrices

G
G

G

Cx
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MCE, QMLE and ATFE look very similar!

Matrix codes:

Dk Ck

MCE:

» matrix codes of rectangular matrices

> isometry (A, B)
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MCE, QMLE and ATFE look very similar!

Systems of polynomials in matrix representation:

Pk

ps
P2

f

fi

g

P1

AT

hQMLE:

» matrix codes of symmetric matrices

> isometry (A,AT)
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MCE, QMLE and ATFE look very similar!

Systems of polynomials in matrix representation:

Pk

ps
P2

f

fi

g

P1

AT

hQMLE:
» matrix codes of symmetric matrices
> isometry (A,AT)
» hQMLE can be seen as MCE, and vice versa
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MCE, QMLE and ATFE look very similar!

Trilinear forms in matrix representation:

ATFE:

» matrix codes of skew symmetric matrices

We will come back to cryptanalysis of this problem!
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MCE, QMLE and ATFE look very similar!

Trilinear forms in matrix representation:

Pk

Py
p2 f

fi

g

P1

AT

ATFE:

» matrix codes of skew symmetric matrices
> isometry (A,AT)

» ATFE can be seen as MCE, and as hQMLE (and vice versa)

We will come back to cryptanalysis of this problem!
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The basic protocol is not very eficient

o P(Oo, O1, $) V(Oo, 01)
Oo o’ /
: com < O i
I e
d) | ch ch <R {O, 1}
I
1 1/11
v‘ resp <— ch resp
_
Ol O/ ; wch (Och )

» Challenge space is of size 2 = Soundness error is 1/2
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The basic protocol is not very eficient

o P(Oo, O1, $) V(Oo, 01)
Oo o’
I com « O, 0",...,00) com
I
_—
) : ch «+g {0,1}"
I
(o
: resp <— wchl s wchy cees wch, resp
v N
?
Ol O/ = wchl (Ochl)
?
yeey O = gy, (Ocn,)

» Challenge space is of size 2 = Soundness error is 1/2
» For security of A bits, needs to be repeated r = )\ times!
» = Signature contains \ isometries (from A rounds)

» = All operations in signing and verification need to be repeated A times
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Optimization 1: Make the challenge space bigger (Multiple public keys)

Oo

%o

P(Oo,...,On,¢1,- ..

V(O ..., On)

com «+ O’

resp <— e

com

ch

resp

ch g {O,Nfl}

o X Yeh; (Och;)

» Challenge space is now of size N = Soundness error is 1/N
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Optimization 1: Make the challenge space bigger (Multiple public keys)

wo P(Oo, oo

S ON, @1,

, ON)

V(O ..., On)

Oo

resp <— wchl ) wchg PR

com + O, 0",..., 00

) wch,

com
J—

ch = (chi,...,ch/)

—

resp
[N

ch «g {0, N — l}r

o X Yeh; (Och;)

» Challenge space is now of size N = Soundness error is 1/N

» For security of A bits, needs to be repeated r =

—2_ times!

log N
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Optimization 1: Make the challenge space bigger (Multiple public keys)

|
A\

O,

P(Oo;---,Ony P15+ -+, ON) V(Oo, - .., On)

Y (r)
com < O, 0", ..., 0 P,

ch «g {0, N — l}r

resp <— wchl ) wchg PR wch, resp

o X Yeh; (Och;)

» Challenge space is now of size N = Soundness error is 1/N

» For security of \ bits, needs to be repeated r =

» = Signature contains ;

N isometries

1
Io N times!
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|
A\

O,

P(Oo;---,Ony P15+ -+, ON)

V(O ..., On)

Y (r)
com < O, 0", ..., 0 P,
_
ch «g {0, N — l}r
resp <— wchl ) chhz, ceey wch, resp
_

o X Yeh; (Och;)

» Challenge space is now of size N = Soundness error is 1/N

» For security of \ bits, needs to be repeated =
» = Signature contains =

» = All operations in 5|gn|ng and verification need to be repeated

1
Io N times!

IoN
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P(Oo;---,Ony P15+ -+, ON) V(Oo, - .., On)

Y (r)
com < O, 0", ..., 0 P,

ch «g {0, N — l}r

resp <— wchl ) wchg PR wch, resp

o X Yeh; (Och;)

Challenge space is now of size N = Soundness error is 1/N

For security of A bits, needs to be repeated r = times!

Io N
= Signature contalns N isometries

= All operations in signing and verification need to be repeated times

Io N
There is a cost - N-fold increase in public and private key
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Optimization 1: Make the challenge space bigger (Multiple public keys)

P(Oo;---,Ony P15+ -+, ON) V(Oo, - .., On)

Y (r)
com < O, 0", ..., 0 P,

ch «g {0, N — l}r

resp <— wchl ) wchg PR wch, resp

o X Yeh; (Och;)

Challenge space is now of size N = Soundness error is 1/N

For security of A bits, needs to be repeated r = times!

Io N
= Signature contalns N isometries

= All operations in signing and verification need to be repeated times

Io N
There is a cost - N-fold increase in public and private key

Always necessary to find the best trade-off
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Optimization 2: Reduce signature size by using seeds

P(Oo,...,On, 1, .., 0n) V(Oy, . ..,0n)
com + O’ com
ch ch«g {0O,N—1}
resp <— then resp
_—
0D L 4 (Och;)

» The map 1) is chosen at random = one can include only seed in signature
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com eo”@’/’”.’o(r) o
_—
ch=(chy,...,ch;) CherRA{OGN—1}
resp <= teny, Yehy - - - 5 Yeh, <T
—
00 £ g, (Ocn,)

» The map 1) is chosen at random = one can include only seed in signature
e 7y can be reconstructed from the seed

29



Optimization 2: Reduce signature size by using seeds

P(Oo,...,On, b1, .., dn) V(Oo,...,0p)
com + O, 0",..., 00 com
ch g {0,N —1}"
resp <= teny, Yehy s - - - 5 Yeh, resp
_

O(i) ; wch,-(och,-)

» The map 1) is chosen at random = one can include only seed in signature
e 7y can be reconstructed from the seed

» Problem: This works only for ch = 0, and probability of choosing challenge 0is 1/N
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So how better are these schemes in terms of performance?

For example, MEDS:

MEDS q n . pk Signature
(= m) (bytes) (bytes)
level 1 4093 25 144 21595 5456
level 2 4003 34 208 55520 10786
level 3 4093 44 272 122000 21052

Important to note:

» QMLE/MCE still not so well understood
» Not NP-hard but likely still hard

» Secure practical parameters significantly changed in the last few years, as our
understanding improved
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Solving matrix code equivalence problems

Several approaches:

» Graph-based techniques
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Solving matrix code equivalence problems

Several approaches:

» Graph-based techniques
» Algebraic models

> Leon-like approach (graph-based-algebraic)
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Graph-based algorithm for QMLE

» [Faugére, Peret, 2006] — inhomogenous version is easy (O(n°) heuristically)
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> [Bouillaguet, Fouque & Véber, 2013] — Graph based approach O(q%"ng)

e Crucial observation: One collision point b = aS turns a hard homogenous instance into
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if b=a$S, then P(x+a) = F(xS +b)T.
= P'(x) = P(x +a), F'(x) = F(x + b) is easy instance!
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Graph-based algorithm for QMLE

» [Faugére, Peret, 2006] — inhomogenous version is easy (O(n°) heuristically)

> [Bouillaguet, Fouque & Véber, 2013] — Graph based approach O(q%"ng)

e Crucial observation: One collision point b = aS turns a hard homogenous instance into
easy inhomogenous one
if b=a$S, then P(x+a) = F(xS +b)T.
= P'(x) = P(x +a), F'(x) = F(x + b) is easy instance!
e Problem is reduced to finding the collision

32



Algebraic modelling of MCE - the straightforward way

For (C,...,C%WY and (DW,... D®) bases of C and D, find invertible A, B and T = (t;) s.t.:

> D =AC")B, vr1<r<k

1<s<k
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Algebraic modelling of MCE - the straightforward way

For (C,...,C%WY and (DW,... D®) bases of C and D, find invertible A, B and T = (t;) s.t.:

> D =AC")B, vr1<r<k

1<s<k

» Directly: bilinear system of knm eqns in m? + n? + k? vars (bilinear aj; ivjr, linear trs)

e Security estimates too high

v

Coefs of A;_and A;_ (B_ and B ) don't appear in same equation

» Consider only a small number « of rows of A, i.e,,

> DY =A,C"B, Vr,i, 1<r<k 1<i<a.

1<s<k

Guess aum coefs of A;, and solve linear system of akn equations in n®> + k2 variables

v

» For m=n=k, a=2is enough — complexity is O(q*"n°)
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Improved Algebraic modelling of MCE

Make use of coding theory!
» G and G’ — the k x mn generator matrices of C and D
o “Flatten” the matrices into vectors
» G’ - the generator matrix of the dual code of D
> Take G(A, B) - generator matrix of ACB (i.e. D) for A and B with unknown coefficients
» Construct the system:
G+ .G(A,B)T =0,
of (mn — k)k bilinear equations in only m? + n* variables
e we got rid of t* variables!
» Solve system with Bilinear XL for example
» Dimension of code — crucial for complexity

e smallest for k = mn/2, and grows as k reduces or grows
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Further improvments of the algebraic modelling of MCE

G,* -G, (A,B) =0,

(1)
G;(L ) GI(B’ T) =0, (2)
G/ -G/ (A, T)=0. (3)

> A total of (mn — k)k + (nk — m)m + (mk — n)n equations in n®> + m? + k* variables
» The system is not semi-regular though!

e Syzygies in degree 3 from linear combination of types t; - (1), aj - (2), bjj - (3)

» We can estimate the Hilbert series and complexity for solving using Bilinear XL

n=m=k plain

improved
14 169 148
22 255 218
30 349 299
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Summary of the course

» Monday - Designs
e General
e Classic designs
» Tuesday - Design and general MQ solving techniques
e Key size optimization techniques
e Algorithms for solving the MQ problem
» Wednesday - Cryptanalysis
e MinRank
e Equivalent keys attacks
» Thursday - Cryptanalysis
e Attacks on UOV

» Friday - Provably secure designs
e Fiat-Shamir signatures MQDSS, SOFIA, MEDS
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Thank you for listening!

And attending this course!
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